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Abstract

This dissertation addresses the problem of detecting buried explosive threats (i.e.,

landmines and improvised explosive devices) with ground-penetrating radar (GPR)

and hyperspectral imaging (HSI) across widely-varying environmental conditions.

Automated detection of buried objects with GPR and HSI is particularly difficult

due to the sensitivity of sensor phenomenology to variations in local environmental

conditions. Past approaches have attempted to mitigate the effects of ambient fac-

tors by designing statistical detection and classification algorithms to be invariant

to such conditions. These methods have generally taken the approach of extracting

features that exploit the physics of a particular sensor to provide a low-dimensional

representation of the raw data for characterizing targets from non-targets. A sta-

tistical classification rule is then usually applied to the features. However, it may

be difficult for feature extraction techniques to adapt to the highly nonlinear effects

of near-surface environmental conditions on sensor phenomenology, as well as to re-

train the classifier for use under new conditions. Furthermore, the search for an

invariant set of features ignores that possibility that one approach may yield best

performance under one set of terrain conditions (e.g., “dry”), and another might be

better for another set of conditions (e.g., “wet”).

An alternative approach to improving detection performance is to consider ex-

ploiting differences in sensor behavior across environments rather than mitigating

them, and treat changes in the background data as a possible source of supplemen-

iv



tal information for the task of classifying targets and non-targets. This approach is

referred to as context-dependent learning.

Although past researchers have proposed context-based approaches to detection

and decision fusion, the definition of context used in this work differs from those

used in the past. In this work, context is motivated by the physical state of the

world from which an observation is made, and not from properties of the observa-

tion itself. The proposed context-dependent learning technique therefore utilized

additional features that characterize soil properties from the sensor background, and

a variety of nonparametric models were proposed for clustering these features into

individual contexts. The number of contexts was assumed to be unknown a priori,

and was learned via Bayesian inference using Dirichlet process priors.

The learned contextual information was then exploited by an ensemble on clas-

sifiers trained for classifying targets in each of the learned contexts. For GPR ap-

plications, the classifiers were trained for performing algorithm fusion. For HSI ap-

plications, the classifiers were trained for performing band selection. The detection

performance of all proposed methods were evaluated on data from U.S. government

test sites. Performance was compared to several algorithms from the recent literature,

several which have been deployed in fielded systems. Experimental results illustrate

the potential for context-dependent learning to improve detection performance of

GPR and HSI across varying environments.

v
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1

Introduction

1.1 Landmine and IED Detection

Detection and remediation of buried explosives is a serious problem faced by military

and civilian personnel around the world. Historically, this threat has taken the form

of anti-tank (AT) and anti-personnel (AP) landmines, which are typically emplaced

en masse over a wide area as a strategic barrier to prevent enemy advances. The

use of landmines in armed conflict often results in a severe humanitarian problem

once fighting has ended, as the majority of casualties of landmine detonations in

post-conflict regions tend to be civilians. According to the International Campaign

to Ban Landmines, civilians made up approximately 70% of the 3,531 worldwide

casualties due to landmines and unexploded ordnance in 2009, and children made

up almost a third of all casualties for whom the age was known [1].

Over the past decade, a new threat has emerged with the proliferation of im-

provised explosive devices (IEDs), which the United States Department of Defense

reports as the leading cause of casualties to American soldiers in Iraq and Afghanistan

[2]. Unlike landmines, IEDs by definition are not systematically manufactured and
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vary widely in the explosive compounds, containers, and detonation mechanisms used

in their construction. Often, the main charge of an IED is composed of a fertilizer

such as ammonium nitrate and a solid fuel such as aluminum or sugar, and containers

tend to be common items such as plastic jugs, buckets, or metal cooking pots [3]. A

recent study has found that although the total number of worldwide casualties from

victim-activated explosives (including landmines, IEDs, and unexploded ordnance)

has decreased from 5,426 in 2007 to 3,956 in 2009, victim-activated IED casualties

have increased in absolute terms (80 in 2008 to 549 in 2009) and percentage of all

attacks (3% in 2008 to 18% in 2009) [4]. Over half of these casualties have occurred

in Afghanistan (accounting for 20% of total casualties in that country), with other

countries reporting anti-personnel IED casualties including Cambodia, the Demo-

cratic Republic of the Congo, India, Iraq, Nepal, Pakistan, Peru, Colombia, Burma,

and Turkey.

In landmine and IED detection, as in many other detection problems, the ultimate

goal is to robustly and accurately identify objects of interest with as few false alarms

as possible. This trade-off can be expressed in terms of probability of detection

(PD) and either probability of false alarm (PF) or false alarm rate (FAR), with

the later usually measured in units of false alarms per square meter (FA/m2). The

obvious risks faced by humanitarian deminers or military route clearance patrols

make landmine and IED remediation very costly and time-consuming. It has been

estimated that while it may only cost a few dollars to manufacture and emplace a

single landmine, the cost of safely removing and neutralizing it can run from several

hundred to one thousand dollars [5]. Therefore, the trade-off between detection and

false alarm rate can also be seen as a trade-off between safety and cost. Humanitarian

deminers may require a PD of 1 at the lowest FAR possible [6], while military route

clearance patrols may stress the importance of maintaining a constant rate of advance

through a potentially-threatening area and may be content with a PD as low as
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0.90 [7].

Currently, a major focus of military research is improving the detection robustness

of counter-mine/IED platforms used in Afghanistan. Afghanistan is notorious for its

difficult terrain, with the South and West characterized by the Registan Desert and

Sistan Basin (one of the driest places on Earth), and the North and East include

the Hindu Kush and Pamir mountains [9]. Within the desert and mountainous

regions, the geology is highly variable, even within single provinces [8]. The climate

of Afghanistan varies regionally, with the Southwest portion of the country being

considerably drier than the Northeast, where mountain snowfall contributes to wetter

conditions at lower elevations.

The impact of varying terrain and weather conditions on the performance of

counter-mine/IED sensors is tremendous. This dissertation primarily focuses on

algorithms for detecting buried threats with ground-penetrating radar (GPR). Al-

though GPR has long been used in a variety of applications, its effectiveness in

landmine detection has been highlighted in much of the research literature over the

past decade. However, the unique signal processing challenges presented by vary-

ing environmental factors must be considered. The following section introduces the

phenomenology of GPR, its sensitivity to various environmental factors, and past

approaches to improve detection performance.

1.2 Ground-Penetrating Radar

1.2.1 Background

GPR operates by transmitting an electromagnetic signal (e.g., a differentiated Gaus-

sian pulse) into the ground and measuring the reflections of the signal at subsurface

dielectric interfaces in either the temporal or frequency domain. The versatility

of GPR is best illustrated by its wide range of applications, which include geo-

physics, forensics, utilities, and archeology [10]. Over the past two decades, GPR
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has emerged as a complementary alternative to electromagnetic induction (EMI)

sensors (i.e., “metal detectors”) as the next generation of landmine detection sys-

tems [11–13]. Metal detectors have historically performed very poorly in detecting

nonmetal targets because they rely on inducing currents in buried conductors and

sensing the resulting magnetic field. Therefore, it may be difficult to detect targets

such as plastic, ceramic, or wood landmines or IEDs using an EMI sensor. GPR can

potentially be used to detect any type of buried object, as long as the its dielectric

properties contrast with the surrounding soil to reflect the transmitted signal.

GPRs used in buried threat detection tend to be wide-band systems with a fre-

quency range and spatio-temporal sampling rates much higher than those used in

most geophysical applications. For example, the GPR used in the Husky Mounted

Detection System (HMDS) manufactured by NIITEK, Inc. (shown in Figure 1.1)

transmits a differentiated Gaussian GPR signal with a bandwidth of 200 MHz - 7

GHz, and time-gates the received reflections at 6.6 ns (which corresponds to 1 m

ranging in air) [14]. The received time-domain signal is referred to as an A-scan.

An example of a GPR A-scan collected over an anti-tank landmine is shown in Fig-

ure 1.2. The first received pulse is the reflection from the ground surface, referred to

as ground-bounce, and is typically of high magnitude. After the ground bounce, the

reflection from the target is received and generally is of lesser magnitude and may

be embedded in clutter corresponding to reflections between subsurface layers.

In vehicular GPR systems such as the HMDS, A-scans may be collected at mul-

tiple spatial locations to form a two-dimensional “image” of the subsurface that is

referred to as a B-scan. A B-scan may illustrate the signals received from each chan-

nel across the array (the crosstrack direction), or at locations corresponding to the

direction of vehicle motion (the downtrack direction). An example of a GPR B-scan

collected over the same anti-tank landmine is shown in Figure 1.3. The B-scan allows

for visual interpretation of the relative locations of the ground, subsurface layer, and
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Figure 1.1: The NIITEK Husky Mounted Detection System (HMDS), which con-
sists of 4 GPR antenna array panels (each with 12 channels) mounted in front of a
Husky route clearance vehicle [14].

Figure 1.2: An example of a GPR A-scan collected over an anti-tank landmine
buried under a paved road. The horizontal axis represents time (in samples) and
the vertical axis represents the amplitude of the received signal. Received pulses
corresponding to the ground-bounce, subsurface layering, and the target itself are
marked.
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Figure 1.3: An example of a GPR B-scan collected over an anti-tank landmine
buried under a paved road. The horizontal axis represents downtrack position (in
samples), the vertical axis represents time (in samples), and the amplitude of the
received signal corresponds to pixel color. Received pulses corresponding to the
ground-bounce, subsurface layering, and the target itself are marked.

target over a given area. Note that the landmine signature has a distinctive hy-

perbolic shape as the sensor approaches and passes over the target. This distinctive

property of GPR phenomenology is exploited by many statistical pattern recognition

algorithms which will be discussed later.

The frequency range, lack of significant self-signature artifacts, and high spatial

and temporal sampling rates of the NIITEK GPR has made it an attractive choice

for high-resolution subsurface imaging. The great amount of detail in a target’s

GPR signature can potentially allow for inference of its geometry, composition, and

inner structure [15]. Figure 1.4 illustrates the GPR signatures of four different anti-

tank landmines, two high-metal and two low-metal types, buried at the same depth

in a dirt road. The signatures of the metallic targets are higher in energy, since

the metal casings reflect the incident GPR pulse almost perfectly. When several A-
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Figure 1.4: Example GPR B-scans illustrating the signatures of different anti-tank
landmine types. The top two B-scans illustrate signatures of landmines with high
metal content, and the bottom two B-scans illustrate signatures of landmines with
low metal content.

scans are collected over the target, the resulting B-scan illustrates a single hyperbolic

target signature. While the plastic targets’ signatures are lower in energy, they are

characterized by multiple reflections that occur within the landmine itself. Therefore,

the signatures of plastic targets are made up of multiple hyperbolas decreasing in

energy with time.

GPR signatures are rich in information about shape, size, and composition of

a buried target. Therefore, GPR data has shown to be applicable for statistical

pattern recognition algorithms to differentiate between responses from targets and

non-threatening clutter, including natural and artificial debris, rocks, roots, and

empty holes. However, a significant challenge is encountered when classifying GPR

signatures collected across widely-varying environmental conditions, such as different

soil types or moisture levels. The effects of these environmental factors on GPR have

been studied extensively, and the body of research in this area is summarized in the
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following subsection.

1.2.2 Environmental Effects on GPR Sensing

The signals generated and sensed by GPR are very sensitive to fluctuations in en-

vironmental conditions because unlike metal detectors, GPR signals interact with

virtually everything present in the local environment. A large body of research has

investigated the effects of various environmental factors on the performance of GPR

in landmine detection applications. In particular, researchers have focused on the

effects of soil dielectric properties (i.e. electrical permittivity and conductivity), het-

erogeneity, and surface texture.

Permittivity is an property of soil that partially governs the speed at which elec-

tromagnetic waves propagate through it. It is a factor of various physical properties

of the soil, including grain size and composition as well as moisture content [10]. Of-

ten, a material’s permittivity is expressed in terms of its value relative to that of free

space (ε0 = 8.85×10−12 F/m) through its relative permittivity or dielectric constant,

εr. A seminal paper by Topp et al. focused on the effect of increased moisture on

the dielectric constant of soils, and illustrated that a polynomial relationship exists

between dielectric constant and volumetric soil water content [16]. Later investiga-

tions by Miller et al. also illustrated that the effect of soil moisture on conductivity

is also nonlinear, exhibiting a logarithmic relationship in which increasing moisture

generally increases conductivity to a saturation level [17, 18].

Permittivity and conductivity affect GPR signals in many ways. The greatest

effect is due to dielectric contrast between the target and surrounding soil. If the

contrast between the two materials’ dielectric properties is large, waves will reflect off

of the target with greater magnitude than if their dielectric properties were similar.

Borchers et al. illustrated that in many cases, increasing soil moisture also increases

this dielectric contrast to yield target signatures with higher magnitude [19]. Fur-
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thermore, soils with higher dielectric constants will force GPR pulses to propagate

more slowly through them. Miller et al. demonstrated this effect, in which the GPR

response of a target appeared later in time in soils with high dielectric constant, and

can easily be confused with the response of a deeper target buried in a soil with low

dielectric constant [17, 18]. Electrical conductivity governs the rate at which prop-

agating electromagnetic waves are attenuated due to heat dissipation. Increased

conductivity will dissipate propagating waves faster than soils with low conductivity,

and will greatly diminish the amplitudes of GPR responses. Takahashi et al. sug-

gested that the effects of increased conductivity on the fidelity of target signatures

are only noticeable for high values, measured on the order of 0.1 S/m [20].

Figure 1.5 illustrates the effect of increasing soil moisture on the GPR signature

of another low-metal, anti-tank landmine. Each of the three B-scans corresponds to

a different moisture scenario; the left plot corresponds to dry conditions (more than 5

days since the last rainfall), the center plot corresponds to moderate conditions (3-5

days since the last rainfall), and the right plot corresponds to wet conditions (less

than 3 days since the last rainfall). Note how the target’s hyperbolic signature both

decreases in energy and appears later in time as moisture increases. This is due to

combined effects of moisture on soil permittivity and conductivity. Increased mois-

ture decreases dielectric contrast between the target and surrounding soil, while also

increasing attenuation. As a result, and forces the target’s GPR response decreases

in magnitude. Increased moisture also decreases the propagation speed, causing the

response to appear later in time.

Subsurface heterogeneity is another major factor impacting the performance of

GPR sensors. Soils are naturally heterogeneous, composed of a mixture of organic

and non-organic matter, and reflections of GPR pulses from heterogeneities can

yield significant amounts of clutter in GPR signals. Types of natural heterogeneity

include buried rocks, roots, animal burrows, as well as stratifications in soil moisture,
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Figure 1.5: GPR B-scans of a low-metal, anti-tank landmine buried at 3 inches
under different moisture conditions. Left: dry conditions, i.e. greater than 5 days
since the last rainfall; Center: moderate conditions, i.e. between 3-5 days since the
last rainfall; Right: wet conditions, i.e. less than 3 days since the last rainfall. [21]

density, or composition. The effects of heterogeneity on the performance of GPR in

subsurface target detection have generally been studied in experiments controlled by

electromagnetic simulations. In a study by Gürel and Oğuz [22], heterogeneities were

approximated by random subsurface scatterers and were varied in quantity, size, and

shape. These experiments demonstrate that in very heterogeneous soils, scattering

from the individual heterogeneities can severely mitigate the GPR signature of the

primary target via destructive interference. In these scenarios, visual target detection

becomes increasingly difficult and automated techniques yield high false alarm rates.

In landmine detection applications which concern primary and secondary roads,

it is also important to consider the effects of road construction. The presence of

bumps, potholes, or obstructions in a road can cause the GPR array to bounce ver-

tically, and depending on the displacement of the antenna significant propagation

losses can be induced along with distortion of the hyperbolic shape that character-

ized a target signature, as presented by Milner [23]. Furthermore, elements of the

road surface such as gravel, asphalt, and concrete layers of can also yield significant
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clutter in a manner similar to soil inhomogeneities. These effects become even more

pronounced when the surfaces are rough. A variety of simulated GPR experiments

have been performed to determine the feasibility of subsurface target detection in

the presence of rough surface. [24–27] and subsurface [28] interfaces. In these stud-

ies, rough surfaces were generally simulated by a stochastic process with a Gaussian

spectrum, parameterized by its variance and correlation length. It has generally

been found that variations of both parameters impact the GPR responses of targets,

with variance dominating the overall effect on arrival time and correlation length

impacting distortion of the signature’s hyperbolic shape. Inclusion of rough subsur-

face layers (e.g., the asphalt/concrete or concrete/soil interfaces) in the detection

scenario further compounds these effects.

Figure 1.6 illustrates B-scans containing the GPR signature of the same low-

metal, anti-tank landmine buried at the same depth in four different types of road

construction: dirt, gravel, asphalt, and concrete. It can be seen in the dirt and gravel

B-scans that the target’s signature is surrounded by responses from other subsurface

heterogeneities. These could be rocks or local differences in soil density or moisture.

The ground bounce also illustrates the effects rough surface scattering, with several

“blobs” of high-energy reflections occurring immediately after the primary ground

reflection. The asphalt lane exhibits an intermediate layer, which is characterized by

a reflection at its top and bottom interfaces that appears to be of similar magnitude

to the target response. The asphalt surface is also smoother than the dirt and

gravel, as illustrated by the ground bounce. Finally, concrete appears to be the most

homogeneous type of lane. The target signature stands out, and is not surrounded

by any secondary signatures from subsurface clutter. The ground bounce is like that

for the asphalt lane, since the surface is paved and therefore smoother than dirt

or gravel. The concrete layer also appears either to have little dielectric contrast

with the soil below it, or has caused the GPR pulse to propagate so slowly that it
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Figure 1.6: GPR B-scans of a low-metal, anti-tank landmine buried in four different
types of road construction: dirt (left), gravel (center-left), asphalt (center-right), and
concrete (right).

did not reach the soil layer in the alloted time, since a distinct reflection from the

concrete/soil interface is not visible at the same scale as other reflections.

1.2.3 Buried Threat Detection with GPR in Changing Environmental Conditions

Due to the tremendous impact that varying environmental conditions have on GPR

signatures of buried targets, much research has focused on the task of robust auto-

mated detection and discrimination. These approaches mostly fall under two general

categories. The first group of techniques that will be discussed includes techniques

based upon electromagnetic theory, which utilize model inversion strategies to decou-

ple the interactions of GPR signals with the target from environmental artifacts. In

contrast, the second category consists of statistical methods, which are based upon

adaptive signal processing, pattern recognition, and machine learning theory.

Inversion Approaches to Target Detection with GPR

The first major category of approaches to target detection with GPR involve inverse

solutions to Maxwell’s equations via rigorous scattering models. The aim of these
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approaches is to explicitly model the environment’s response to GPR and decouple

it from the response of the target. After recovering the basic GPR signature of the

target, visual confirmation or a simple detector can be used to determine whether a

target is present.

Several electromagnetic model inversion techniques have been proposed for miti-

gating the effects of antenna reverberation [29–31], rough surface scattering [27], and

lossy/moist soils [32–34]. Prototype GPR signatures, either collected in a laboratory

or in a controlled field campaign are usually employed as a target model. When

data is collected in the field, a deconvolution technique is applied to the GPR signals

for isolating the target signature from the environmental artifacts. Inversion tech-

niques have been shown to quantitatively estimate various environmental parameters

(e.g., soil permittivity and conductivity) in addition to several aspects of the target’s

geometry, including its location and burial depth.

However, applying closed-form model inversions to GPR data pose several im-

plementation difficulties that must be considered. The greatest shortfall of inverse

modeling lies in the time needed to compute these solutions; subsurface threat de-

tection is already an arduous and time-consuming task, and improvements in tech-

nology should not impose any additional time expense onto deminers. Furthermore,

vehicular route clearance platforms are required to operate at a constant rate of ad-

vance, and therefore all on-board algorithms must operate in real-time [7]. Finally,

closed-form models are difficult to obtain for GPR responses from non-canonical or

oddly-shaped targets. Even if numerically-simulated or laboratory-measured proto-

type signals can be obtained, it will be difficult to keep up with the threat of IEDs

that are constantly evolving with changes in countermeasures, available material,

training of bomb-makers, and the sophistication of production facilities. Alterna-

tively, statistical techniques may be a more robust approach to accounting for these

aspects of potential targets, as well as the ever-changing subsurface environment, in
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subsurface threat detection algorithms.

Statistical Approaches to Target Detection with GPR

The category of statistical techniques for target detection in GPR can be further di-

vided into two sub-categories: prescreeners and classifiers. Prescreeners are compu-

tationally inexpensive anomaly detectors that must detect a wide variety of potential

threats and adapt to changing background statistics. Although template matching

techniques based on correlation filters can perform well in detecting specific target

types in a static environment, as demonstrated by Brunzell [35], they may fail when

faced with a diverse target population and multiple environments. Instead, adaptive

filtering approaches have shown promise as prescreeters that model the GPR back-

ground and detect anomalies that statistically differ from the background. Examples

include linear prediction as proposed by Ho et al. [36] and Yoldemir and Sezgin [37],

least-mean-square (LMS) prediction proposed by Torrione et al. [38,39], and particle

filters proposed by Ng et al. [40]. The goal of prescreening is to detect all of the

anomalies present in the data, whether they are associated with true landmine sig-

natures or not. The leading prescreeners do succeed at this, but also mistake many

clutter anomalies for potential targets. Therefore, prescreeners generally perform at

a high PD, but at the expense of a moderate FAR.

A larger body of research has been focused on the development of feature-based

classifiers based on statistical pattern recognition and machine learning theory. After

the prescreener finds locations in the raw data where an anomaly is present (referred

to as alarms), features are extracted to provide a low-dimensional representation

of the GPR data collected at that location. Features are generally physics-based

and/or morphological, and aim to be invariant with respect to the environment. The

classifier then applies a statistical decision rule to the feature space, and classifies the

anomalies as targets or clutter. The approach of prescreening followed by feature-
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based classification has shown to be effective in maintaining high PD while reducing

PF/FAR to levels appropriate for fielded systems [39,41–47].

Feature extraction approaches are generally motivated by the underlying phe-

nomenology of a particular sensor, so as to exploit the physical characteristics of

target responses. In GPR, feature extraction is used to characterize the hyperbolic

shape and reverberation properties of target responses. A wide variety of feature

extraction approaches have been proposed in the recent literature, including edge-

based [42–44,48], spectral [49,50], geometric [45,46,51], and texture [47] features. The

decision rules are learned from the features using statistical models. These include

hidden Markov models [42, 48], self-organizing maps and fuzzy k-nearest neighbors

(KNN) [43, 44], relevance vector machines [47], and neural networks [45, 46]. GPR

features have also been combined with features extracted from other sensor data,

such as EMI or seismic sensors [44,52–54], as a feature-level form of sensor fusion.

Until recently, the performance of leading feature-based landmine detection al-

gorithms were not compared with respect to environmental context. Wilson et al.

made a large-scale comparison between four leading classification algorithms on a

large GPR data set that was collected at four environmentally distinct test sites [41].

The following algorithms were compared: hidden Markov model (HMM) algorithm

proposed by Gader et al. [42, 48], the edge histogram descriptor (EHD) algorithm

proposed by Frigui et al. [44,55], the algorithm based on geometric features (GEOM)

proposed by Gader et al. [45], and the spectral correlation feature (SCF) algorithm

proposed by Ho et al. [49].

Table 1.1 summarizes the results of the experiment, in which the algorithms were

ranked based on benchmark PDs and FARs. The table illustrates that although

EHD and HMM were the best-performing algorithms on the aggregate of all sites,

certain algorithms performed better than others on specific sites and for specific

performance metrics. In other words, the comparisons by Wilson et al. showed
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Table 1.1: Performance of Landmine Detection Algorithms as Compared by Wilson
et al., [41].

Metric PD PD PD FAR FAR FAR
=.95 =0.90 =0.85 =0 =0.0007 =0.00007

Site A EHD HMM SCF GEOM SCF GEOM
Site B EHD EHD EHD EHD EHD EHD
Site C SCF GEOM GEOM/SCF EHD EHD GEOM
Site D EHD HMM HMM EHD EHD EHD
All Sites EHD HMM HMM EHD EHD EHD

that there is currently no “silver bullet” classifier for GPR-based landmine detection

across all environments. Furthermore, since the four algorithms exploit complemen-

tary features of GPR signatures, it was suggested that algorithm fusion may provide

additional performance benefits. Experimental results illustrated that fusing the

confidences of each algorithm, weighted according to their relative performance in

each environment, could yield significant performance improvements.

1.3 Context-Dependent Learning

The impact of underlying contextual factors on how observations can be interpreted

is not unique to landmine signatures in GPR data. Such effects, known as context-

dependency, have been investigated much earlier in the field of semantic memory [56].

Words have virtually an infinite number of properties (e.g. “hospital” is both a

“building” and “a place where food is served”). However, certain properties may be

emphasized by how the word appears in certain semantic context (context-dependent

properties), while others are always evident (context-independent properties). Re-

ferring to the hospital example, it is clearly evident that a hospital is a building,

making it a context-independent property. However, the property of hospitals being

a place of food service may only become evident in a discussion with patients and

their dietitians, therefore making it a context-dependent property.

In statistical learning, the manifestation of context-dependent properties may
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come in the form of changes in the distribution of a class or variable of interest (i.e.,

the target concept) with respect to underlying contextual factors. This problem is

often referred to as concept drift [57, 58]. For learning in the presence of concept

drift, it may be beneficial to utilize a context-dependent model. Speech recognition

is a field that embraced this notion early on, where it was shown that context-

dependent phonetic models (i.e., modeling phones as statistically-dependent on the

phones immediately preceding and following it) yielded substantial improvements in

the word recognition performance [59–61].

In remote sensing applications, it can be useful to exploit the dependency of sensor

phenomenology on ambient environmental factors. Although the contextual factors

being exploited are often sensor-specific, the common thread is that local similarities

in sensor data can be exploited to improve overall robustness in detection perfor-

mance. For example, in airborne remote sensing imagery, segmentation algorithms

aim to find several locally homogeneous regions in a macroscopically heterogeneous

image. These areas could correspond to buildings, different types of planted crops

and vegetation cover, roads, or areas affected by natural disasters. While all pixels

covering these types of areas should appear similar at a macroscopic scale, pixel-

based segmentation generally leads to significant misclassification error within these

regions. Incorporating spatial context has therefore been proposed for “smoothing

out” these errors to yield more homogeneous segmentation regions [62,63].

Anomaly detection is another problem that can benefit from a context-dependent

learning approach, since ambient conditions can significantly affect the statistical dis-

tributions of anomalous sensor data, features extracted from such anomalies, or the

confidence values of anomaly detection algorithms that exploit complementary infor-

mation. In any of these spaces, similar observations can potentially be clustered into

discrete contexts that are representative of unique environmental conditions. This

process is referred to as context identification. After context identification is per-
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formed, context-specific models can be trained for performing anomaly classification

within each context. The decision rule for each of these classifiers may be unique for

each of the contexts that were learned.

Several techniques have been proposed for context-dependent learning to assist

with landmine detection in GPR data as well as in hyperspectral imagery (HSI). One

method, known as Context Extraction for Local Fusion (CELF) [64], was proposed

by Frigui et al. for multi-sensor fusion (e.g. GPR/EMI) in autonomous landmine

detection systems. The CELF algorithm is motivated by the assumption that differ-

ent subsets of the threat population will respond differently to different sensors. For

example, shallow AP landmines are more easily detected with an EMI sensor than

with GPR, because their GPR signature is often lost in the ground bounce. There-

fore, the EMI sensor should be relied upon more heavily when those types of targets

are encountered. Conversely, low-metal AT landmines are more easily detected by

GPR than EMI, so GPR should be relied upon more heavily for these targets.

In CELF, a fuzzy clustering scheme was proposed for grouping together observa-

tions with similar responses from each sensor, and these clusters describe the under-

lying contexts. Learning the contexts is performed discriminatively by optimizing an

objective function that accounts for both cluster size as well as discriminability of ob-

servations in each cluster by a linear decision rule. Experimental results showed that

CELF was able to partition large data sets into observations with similar GPR/EMI

responses, and it achieved better classification performance than either individual

sensor as well as a conventional linear fusion incorporating no contextual informa-

tion. It was also shown that CELF can be applied to fusion of multiple classification

algorithms for the same sensor type [55]. For example, the four GPR algorithms

that were originally compared by Wilson et al. [41] can be fused differently based

on the underlying context, yielding significant improvements in performance over

conventional algorithm fusion.

18



Another context-dependent classification technique, originally proposed for HSI,

is the random set framework (RSF) proposed by Bolton and Gader [65]. The RSF

treats observation populations, rather than individual observations, as random sets.

The random sets of spectra that constitute the individual contexts were represented

by a germ-and-grain model [66], which allowed for tractable modeling of irregular

orientations of the observation space. A unique GMM classifier (based on the like-

lihood ratio test) was then trained via maximum-likelihood for each of the learned

contexts.

The RSF differs significantly from CELF in how training is performed; the context

model is trained in a supervised manner, with each context corresponding to the

distinct environmental conditions in which data was collected, and the classifiers are

learned independently from the context model. The germ-and-grain model is learned

by minimizing the misclassification error between contexts, and the classifiers are

trained by expectation-maximization of the GMM parameters for each class using

the observations found in each context. Experimental results illustrated that the

RSF achieved better classification performance than GMM classifiers incorporating

no contextual information, including several baseline algorithms from the literature.

Both CELF and RSF have illustrated the potential that context-dependent learn-

ing has in improving overall performance. However, the approach on which these

techniques are based can be improved upon further. First, in both CELF and RSF

contextual factors are learned from similarities and differences in target responses.

However, it may be desirable in some applications to be able to infer the context

from a background, since it can be generally assumed that most data collected in the

field will be target-free. For example, vehicular route-clearance systems that may

travel and collect data for many kilometers may be able to obtain valuable contextual

information from the background before encountering a target.

Furthermore, both CELF and RSF require specification of the number of con-
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texts to be learned a priori. This caveat could be especially problematic in situa-

tions where the number of contexts that can potentially be encountered is unknown.

Because each of these approaches essentially uses a mixture model to partition a

high-dimensional data set into discrete contexts, the context model can easily be

overtrained by specifying too many contexts, or undertrained by specifying too few.

It may be more desirable to use a model that facilitates learning of the number of

contexts that best explain the training data, while also facilitate the learning of new

contexts as field data becomes available.

1.4 Novel Contributions

In contrast to the past literature, this dissertation is based on a different interpreta-

tion of context for anomaly detection applications. While past techniques by Frigui

et al. and Bolton et al. have focused on context being a property of individual

sensor observations, the algorithms developed in this work interpret context as the

state of the world at a given location in space and time. Contextual information was

extracted from raw background data through a set of physically-motivated features,

which were developed for characterizing various environmental properties. Using

these features, a variety of nonparametric context models were trained via Bayesian

methods to learn a distinct number of contexts. Then, unique algorithm fusion

weights were learned for each of the contexts. The overall classification performance

of context-dependent fusion was compared to the leading target detection algorithms

from the literature, as well as conventional algorithm fusion approaches.

A flowchart outlining the general procedure for context-dependent learning, as

proposed in this dissertation, is shown in Figure 1.7. Given a set of observations x,

the underlying context of each observation is first identified probabilistically from the

contextual features x(C). The resulting context posteriors, p(cn = m|x(C)
n ), indicate

the probability that xn was observed under context m, for m = 1, 2, ...,M . After
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Figure 1.7: Flowchart illustrating a basic context-dependent classification tech-
nique.

partitioning the training data intoM contexts, an ensemble ofM binary classifiers are

trained on the target features x(T ) of observations from each context. The resulting

within-context target posteriors, p(H1|x(T )
n , cn = m), represent the probabilities that

xn belongs to the H1 class, given that it was observed under context cn. Finally,

target posteriors p(H1|xn) are calculated by integrating over uncertainty in context:

p(H1|xn) =
M∑
m=1

p(H1|x(T )
n , cn = m)p(cn = m|x(C)

n ) (1.1)

Context learning was performed using features, motivated by GPR phenomenology,

that provide a low-dimensional characterization of local environmental conditions.

These features were considered separately from the features used to characterize tar-

gets from non-targets, thereby facilitating learning of the context model’s parameters
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independently. Experiments were performed with real and simulated sensor data to

illustrate that the context features are indicative of quantitative environmental prop-

erties which represent contextually-relevant factors in subsurface sensing.

The context models proposed in this dissertation are based on nonparametric

Bayesian inference. The statistics literature has proposed several nonparametric

Bayesian techniques that are useful in learning models of uncertain order, and these

models facilitate an approach to learning the effective model order. In context learn-

ing, this amounts to learning not only the parameters that characterize each context’s

distribution in feature space, but also the number of contexts present in the training

data.

Several distinct context models are proposed in this dissertation. Although they

all are essentially mixture densities that will partition the data into M components,

they differ in the information used to partition the data. First, approaches that as-

sume independence of observations are proposed. These include a Gaussian mixture

model and a mixture of factor analysis models, each incorporating a Dirichlet process

prior to facilitate learning of the number of contexts [67, 68]. A context model that

incorporates spatial information is also presented, and is based upon an HMM with

a Dirichlet process prior to facilitate learning of the number of states [69]. Compar-

isons are made between the different types of context models, and the advantages and

disadvantages of using each are discussed. Furthermore, the merits of incorporating

spatial information are also highlighted.

Two general techniques for learning the proposed context models are used. First,

several generative context learning approaches are presented that consider the train-

ing of the context model as an independent task from training the binary target

classifiers. A generative approach will learn the model that best explains the train-

ing data by maximizing the posterior probability of the model parameters. Such a

learning approach can be useful in scenarios in which contextually-diverse training
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data is available, and can potentially avoid overtraining to the given target/clutter

population. The other approach is discriminative context learning, which will learn

contexts that allow for the best discrimination of targets from non-targets. This

is achieved by maximizing the posterior probability of the class labels, given the

training data and the context model parameters.

Experimental results are presented for using context-dependent learning as a

means for improving decision fusion of several detection algorithms used in fielded

GPR systems. Performance is compared to the individual algorithms as well as

to global fusion. In addition, results are presented illustrating the performance

of context-dependent learning for improving anomaly classification in HSI. In both

types of problems, context-dependent learning is shown to achieve higher PD and

lower FAR than conventional machine learning approaches, emphasizing that valu-

able contextual information can be exploited from the background data to improve

sensing robustness in the presence of changing environmental conditions.
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2

Extracting Contextual Information from GPR Data

One of the goals of this work is to statistically model the distinct contexts present

in large bodies of GPR data collected over varying environmental conditions. How-

ever, the dimensionality of raw sensor data can be very high. For example, data

collected with the NIITEK GPR has a temporal resolution of 512 samples and a 5

cm spatial sampling rate, and a B-scan covering the entire signature of a target could

be as many as 25 downtrack samples long. Therefore, vectorizing the B-scan would

result in a 64,000-dimensional observation. Furthermore, many dimensions (i.e., pix-

els) of raw data could be highly correlated (e.g., neighboring pixels), while others

could be non-informative (e.g., pixels above the ground bounce). High-dimensional

data is very difficult to model statistically due to the oft-cited curse of dimension-

ality [70–72], which suggests that the number of required training samples increases

exponentially with the number of dimensions. Therefore, in order to effectively model

the distribution of various contextual factors in GPR data, it may be desirable to

utilize low-dimensional features that characterize such factors and are amenable to

clustering.

In this chapter, physics-based techniques for extracting contextual features from
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raw GPR data are described1. GPR phenomenology suggests that a single B-scan

may contain an abundance of information about various contextual factors, including

surface roughness, soil electromagnetic properties, the presence of multiple layers,

and the subsurface heterogeneity. Direct estimation of these subsurface environ-

mental properties may be achieved via inverse numerical modeling or deconvolu-

tion [27,29–34]. However, the computational complexity of inversion and deconvolu-

tion makes real-time implementation of these approaches infeasible.

This chapter proposes an alternative technique for extracting contextual infor-

mation from GPR background data using several features that were developed based

upon a transmission line model [10,39]. Statistical classification and regression mod-

els were trained on the features to predict multiple environmental properties from

real and simulated GPR data. Experimental results illustrate that the proposed

features are indicative of several quantitative factors that can be used to facilitate

context learning in buried threat detection applications.

2.1 Transmission Line Model for GPR

A simple phenomenological model for GPR A-scans can be motivated by electrical

transmission lines [10,39]. In a similar manner to a signal transmitted down a trans-

mission line with several impedance mismatches, a GPR signal consists of several

reflections of the transmitted pulse at various amplitudes and delays. According

to this model, each received pulse therefore corresponds to a subsurface interface.

Figure 2.1 provides a basic illustration of the transmission line model as an approxi-

mation of a heterogeneous soil environment. Note the similarity of the signal derived

from such a model to a typical GPR A-scan.

1 This chapter is derivative of previously published work, c© 2012 IEEE. Reprinted, with permis-
sion, from Ratto et al., “Characterization of the subsurface environment with GPR using feature-
based statistical learning,” IEEE Transactions on Geoscience and Remote Sensing, in review as of
Feb. 2012.
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Figure 2.1: A diagram of transmission line model for GPR A-scans [39]. Left:
an example of unique dielectric layers in subsurface. Center: the corresponding
transmission line with three characteristic impedances. Right: An A-scan generated
under this model.

Several broad assumptions are made by modeling GPR A-scans as the signal

received from a mismatched transmission line. Multipath effects are ignored, propa-

gating waves are assumed to be planar, all interfaces are assumed planar and infinite

in extent, and that the respective transmission media are assumed to be homoge-

neous, lossless, and non-dispersive. However, any deviations of real signals from the

model assumptions may be accounted for by a statistical model. In the remainder

of this chapter, the features derived from the transmission line model are described,

and experimental results illustrate that these features are indicative of quantitative

environmental properties via statistical inference.

2.2 GPR Contextual Features

A variety of features are proposed in this chapter for extracting contextual informa-

tion from GPR B-scans. The following notation is used in describing the features:

columns of the B-scan are A-scans denoted as a(t), where t is a temporal sample index

(t = 1, 2, ...T ); rows are the time-slices denoted as b(n), where n is a spatial sample

index (n = 1, 2, ..., N). For each feature that is described in this section, sample
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feature vectors extracted from simulated B-scans are shown. The simulated B-scans

were generated using the publicly-available finite-difference time-domain (FDTD)

modeling software GprMax [73,74].

Energy features

The total energy of an A-scan is a basic feature that is calculated by summing the

time samples of a squared A-scan:

e =
T∑
t=1

a2(t) (2.1)

The energy feature provides information regarding several properties of the subsur-

face environment. In scenarios where the GPR antenna is close to the ground, there

is high dielectric contrast between the air and the ground, or the soil is very heteroge-

neous, the energy feature should have a high value. Furthermore, scenarios in which

the GPR antenna is high above the ground, the soil has little dielectric contrast with

the air, or the subsurface is largely free of inhomogeneities, the energy feature should

yield a low value.

Reflection coefficient features

In transmission lines, the degree of impedance mismatch is often expressed in terms

of reflection coefficients, i.e. the ratio of reflected to transmitted power. In GPR,

the reflection coefficient at the air/ground interface is of particular interest; because

the dielectric properties of air are usually assumed to be equal to those of free space,

the air/ground reflection coefficient may characterize subsurface dielectric properties.

Accurate estimation of the air/ground reflection coefficient must take into account

propagation losses, rather than simply compare the ground bounce magnitude to

the transmitted power, or else estimates may be inaccurate [75]. The free-space loss
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(LFS) of a line-of-sight path follows the power law given by

LFS =

(
4πd

λ

)2

=

(
4πdf

c

)2

, (2.2)

where distance is denoted by d, λ is the signal’s wavelength, and c is the free-space

propagation speed. For a given distance, transmit and receive antennas with respec-

tive gains PT and PR, and a reflector with cross-sectional area A, and transmitted

power PT , the received power PR can be expressed as a function of the reflection

coefficient Γ:

PR =
PTGTGRA

4πd2LFS
Γ2 =

PTGTGRc
2

(4π)2f 2d4
Γ2 (2.3)

Solving for Γ, and consolidating PT , GT , GR, A, f , and c into a single constant

that characterizes the radar system, the reflection coefficient can be expressed as

proportional to a function of distance and received power:

Γ ∝ d2
√
PR. (2.4)

In GPR data, the reflection coefficient can be approximated by applying basic

radar ranging to the approximate ground bounce. First, d must be calculated by

dividing the ground bounce arrival time by the system’s range resolution (expressed

in samples/m) T :

d = tGB/S (2.5)

where it is assumed that

tGB = argmax
t

a(t) (2.6)

The received power is calculated by windowing out the ground bounce from an A-scan

using the Gaussian function w(t). The Gaussian window is centered on the midpoint

between the A-scan’s global maximum and minimum, and its width is specified by
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the constant σw:

PR =
T∑
t=1

w(t)a2(t) (2.7)

w(t) =
1√

2πσ2
w

exp

[
−(x− µw)2

2σ2
w

]
(2.8)

µw = tGB + (tmin − tGB)/2 (2.9)

σw = const. (2.10)

tmin = argmin
t

a(t) (2.11)

Figure 2.2 illustrates a comparison of the energy and reflection coefficient fea-

tures extracted from simulated B-scans generated over simulated soils with different

dielectric properties. The top panel illustrates a soil characterized by a low dielectric

constant (εr = 3), and the bottom panel illustrates a soil characterized by a high di-

electric constant (εr = 10), and the electrical conductivities of both soils were equal.

The plots of the feature values illustrate that the energy and reflection coefficient

values are higher for the soil with high dielectric constant. Note that the values of

the reflection coefficient feature do not reflect valid reflection coefficient values (i.e.,

between 0 and 1) because the scaling constants in (2.3) are ignored.

Matching pursuits features

GPR data can appear very cluttered when collected over heterogeneous soils due to

reflections from multiple subsurface interfaces, and it may be useful to determine

when heterogeneous soils are encountered. One technique for measuring soil hetero-

geneity based on the transmission line model is to determine how many unique pulses

can be used to replicate an A-scan. This is based on the hypothesis that A-scans

collected over heterogeneous soils would consist of more pulses than A-scans col-

lected over homogeneous soils. In this work, the matching pursuits (MP) algorithm
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Figure 2.2: Examples of energy and reflection coefficient features for FDTD-
simulated B-scans. Top: soil with dielectric constant of 3. Bottom: soil with di-
electric constant of 10. The simulated B-scans are shown at left, and plots of the
energy and reflection coefficient features values are shown at right. c© 2012 IEEE.

proposed by Mallat and Zhang [76]) is used to approximate an A-scan as a sum of

unique pulses, which are selected from a dictionary D = {d(ω, t0)} of differentiated

Gaussian elements with varying widths ω and temporal positions t0:

d(ω, t0) = −(t− t0)
ω

exp

(
−(t− t0)2

2ω

)
, t0 = 1, 2, ..., T (2.12)

The basic MP algorithm first correlates each dictionary element with the origi-

nal signal, a = {a(t)}, then subtracts from the signal the most-correlated element

weighted by its correlation. The process is then repeated using the residual sig-

nals, and continues until the change in energy falls below a specified threshold (δ0).

Algorithm 1 summarizes the application of MP to GPR A-scans.

From the set of selected dictionary elements, features can be extracted to char-

acterize subsurface heterogeneity. One feature is the number of iterations for MP to
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converge (nMP ), which is analogous to the number of unique pulses that make up

an A-scan. From the transmission line model, each pulse corresponds to a unique

reflection at a dielectric interface. Therefore, the number of MP iterations may char-

acterize the amount of subsurface heterogeneity. Soils with low levels of heterogeneity

should yield lower values of nMP than soils with high levels of heterogeneity.

Algorithm 1 Basic matching pursuits [76]

input a,d, δ0, ω
n = 0
r = a
while δE ≤ δ0 do
n = n+ 1
for t0 = 1, 2, ..., T do
ρ(ω, t0) = d(ω, t0)

T r/||d(ω, t0)||2
end for
t′0n = argmax

t0

ρ(ω, t0)

r = r− ρ(ω, t′0n)d(ω, t′0n)
En = ||r||2
δE = En−1 − En

end while
nMP = n
â = a− r
return nMP , â, t0

′

Another feature derived from MP is the temporal histogram of the selected dic-

tionary elements, denoted by hMP . The histogram bins correspond to the temporal

centers t′, and are experimentally determined. The goal of using the MP histogram

is to differentiate between soils of varying heterogeneity, using the hypothesis that

as heterogeneity increases so will the number of late-time reflections. The number

of late-time reflections would be reflected in the late-time values of the histogram.

Figure 2.3 illustrates the MP features for two B-scans. The top plots illustrate a

simulated B-scan over soil with low heterogeneity and corresponding MP histogram,

while the bottom plots corresponds to a highly heterogeneous soil. Note the dif-

ferences in the number of MP iterations and late-time histogram bins. The more

heterogeneous soil yields a higher number of total reflections, with a greater propor-
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Figure 2.3: Example of MP histogram extracted from B-scans over soils. Top-
left: Simulated B-scan of low-heterogeneity soil; Top-right: number of MP iterations
until convergence and MP histogram for low-heterogeneity soil; Bottom-left: Simu-
lated B-scan of high-heterogeneity soil; Bottom-right: number of MP iterations until
convergence and MP histogram for high-heterogeneity soil. c© 2012 IEEE.

tion of them occurring late in time. Therefore, MP places more dictionary elements

in the later portion of the signal. Since the ground bounce is the portion of the

A-scan with the highest local energy, the majority of dictionary elements would be

selected to describe that portion of the signal. To prevent this from occurring, and

to obtain more information regarding subsurface reflections, MP was only run on

A-scan samples that occur after tGB.

Linear prediction features

Linear prediction (LP) filters provide causal estimates of the power spectrum of a

signal [77]. In GPR applications, LP filters have been found to be particularly useful

as anomaly detectors [36–40]. Linear predictors can be applied to time-slices (rows)
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of GPR data, so that anomalies could be characterized by high prediction error. This

result is because the LP filter is based on assumptions similar to the transmission

line model - planar interfaces infinite in extent should yield the same response for

all locations, and deviations from that planar assumption are considered as random

noise. Therefore, the behavior of LP filters may characterize “steady-state” environ-

mental properties such as soil dielectric constant [78], as well as stochastic properties

such as surface roughness and heterogeneity [79].

The equation for a LP filter takes the form of an autoregressive model of order

K, characterized by weights α = [α(1), α(2), ..., α(K)]T , which are applied to B-scan

time-slices b(n) = [b(n), b(n−1), ..., b(n−K)]. The filter outputs a zero-mean, white

noise process e(n) with variance ν:

K∑
k=1

α(k)b(n− k) = e(n). (2.13)

The weights can be determined from the normal equations,

α = R−1p, (2.14)

where the correlation matrix (R) and cross-correlation vector (p) are given by

R = E
[
b(n− 1)bH(n− 1)

]
(2.15)

p = E [b(n− 1)b(n)] . (2.16)

Given the weights, the prediction-error power (ν) can be found by calculating the

mean-square error of the filter applied to the data:

ν = E
[
|b(n)−αTb(n− 1)|2

]
(2.17)

= σ2
b − 2αTp +αTRα

To extract the LP features from GPR data, a B-scan is first aligned according to

each column’s tGB, and all data up to and including tGB are discarded. LP filters of

33



order K are then trained and evaluated on aligned B-scan rows bt′ , where t′ are 10

experimentally-determined row indices. The calculated values of νt′ are concatenated

into a feature vector of length equal to the number of rows used. In line with past

investigations [78, 79], models of order M = 4 were used. Although different values

of M were considered, the overall effect of changing the model order on prediction

error was not significant.

Figure 2.4 illustrates two aligned B-scans corresponding to soils with different

dielectric and surface roughness properties (shown at left), and compares the differ-

ences in corresponding prediction-error power (shown at right) . In the top panel, the

features corresponding to a soil with low dielectric constant and high “roughness”

(characterized by a surface with low correlation length) are shown, and the corre-

sponding prediction-error power tends to be high. As shown in the bottom panel,

a soil with high dielectric constant and low “roughness” (characterized by a highly-

correlated surface) yields more predictable data, and therefore the prediction-error

power is much lower and is more constant with respect to time slice index.

2.2.1 Feature consolidation

Several of the proposed contextual features (e, Γ, nMP ) are extracted from individual

A-scans, and it is important to eliminate redundancy and spatial dependence in

feature extraction. Therefore, these features were averaged across the columns of

the B-scan from which they were extracted. Table 2.2.1 summarizes the elements

of the 23-dimensional feature vector, x(C) = [ē, Γ̄, n̄MP ,hMP ,ν], to provide a low-

dimensional representation of the B-scan’s contextual information. In all experiments

performed on these features, the dimensions of x(C) were normalized to be zero mean,

unit variance prior to further processing.

The following sections illustrate the efficacy of the proposed features in charac-

terizing multiple subsurface environmental properties. Experiments were performed
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Figure 2.4: Example of LP prediction-error power extracted from aligned B-scans
over simulated soils. Top-left: simulated aligned B-scan of soil with low dielectric
constant and low surface correlation length. Top-right: LP prediction-error power,
measured as a function of temporal index, for soil with low dielectric constant and low
surface correlation length. Bottom-left: simulated aligned B-scan of soil with high
dielectric constant and high surface correlation length. Bottom-right: LP prediction-
error power, measured as a function of temporal index, for soil with high dielectric
constant and high surface correlation length. c© 2012 IEEE.

Table 2.1: Features (x(C)) for classification and regression of environmental param-
eters.

Element Description # of Dimensions
ē Average A-scan energy 1
Γ̄ Average reflection coefficient 1

n̄MP Average # MP iterations 1
hMP MP Temporal Histogram 10
ν LP filter prediction-error power 10
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using both simulated and field-collected GPR data, and preliminary analysis was

originally presented in [80]. Descriptions of the data sets are also provided, including

the settings of feature extraction parameters for each experiment.

2.3 Evaluating GPR Contextual Features: Simulated Data Experi-
ment

The first experiment to test the efficacy of GPR contextual features was performed

on simulated GPR data with known environmental properties. Simulated B-scans

were generated using the publicly-available GprMax software [73,74], which is based

on the finite-difference time domain (FDTD) modeling technique [81,82]. Simulated

B-scans were constructed by displaying the measured electric field as a function of

time at a series of fixed locations corresponding to the receiving antenna’s position.

GPR data was simulated over many realizations of a soil environment with several

parameters, some random and others deterministic. The soil environment consisted

of a random rough surface, homogeneous soil background, and random subsurface

scatterers, and is characterized by four environmental model parameters. B-scans

collected over the simulated soil were meant to approximate target-free background

data. Contextual features were extracted from the simulated B-scans, and the sim-

ulation parameters were predicted from the features via relevance vector machine

(RVM) regression and classification [83,84]. Details regarding RVM implementation

can be found in Appendix B.

2.3.1 Simulated Data Set

The two-dimensional computational domain 5 m × 60 cm with a spatial resolution

of 2.5 mm. The computational domain was surrounded by a perfectly matched layer

(PML) boundary condition, which is necessary to absorb any extraneous reflections

of the electromagnetic fields off the edges of the domain. A-scans were measured
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as the received electric field, collected at spatial intervals of 5 cm, yielding a total

of 100 A-scans per simulation. The transmit and receive elements were modeled as

co-located infinite line sources, polarized in the perpendicular location, and located

10 cm above the mean surface elevation. The transmitter was excited by a Gaussian

current pulse with center frequency fc = 2 GHz, therefore yielding a differentiated

Gaussian pulse in the electric field. FDTD was run with a time gate of 6.6 ns, i.e.

the round-trip travel time for a propagation distance of 1 m in air, with a temporal

resolution of S = 1120 time samples per A-scan. Therefore, each FDTD simulation

yielded an 1120 × 100 B-scan consisting of received electric field as a function of

time and receiver location.

The computational domain included a soil half-space characterized by a variety

of model parameters specified a priori. The soil surface was stochastically generated

from a Gaussian power spectrum, characterized by the correlation length parameter

(l(surf)). The homogeneous soil background was characterized by a range of values

of dielectric constant (ε
(soil)
r ) and conductivity (σ(soil)). Finally, the subsurface het-

erogeneities were of random quantity, characterized by a binomial distribution with

mean N (scats). Several examples of the computational domain are shown in Figure 2.5

alongside the corresponding simulated B-scans. Each example illustrates a unique

combination of model parameters. In the following subsections, the generation of

the various elements of the simulated soil are described in detail.

Rough soil surface

A common technique for modeling rough surfaces in scattering experiments is to

model the surface as a stochastic process f(n) (where n denotes spatial index) with

a Gaussian spectrum [24–28]. The surface profile is realized by passing white noise
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Figure 2.5: Examples of computational domain and FDTD-simulated GPR data.
Top: ) ε

(soil)
r = 2, σ(soil) = 10−7, l(surf) = 0.25λ, N (scats) = 100. Center: ε

(soil)
r = 5,

σ(soil) = 10−5, l(surf) = 1λ, N (scats) = 300. Bottom: ε
(soil)
r = 10, σ(soil) = 10−1,

l(surf) = 2λ, N (scats) = 500. The top plot of each panel illustrates the computational
domain, where the horizontal axis represents position, the vertical axis represents
depth, and color represents dielectric constant. The bottom plot illustrates the
corresponding simulated B-scan, where the horizontal axis represents position, the
vertical axis represents time, and color represents the received electric field amplitude.
c© 2012 IEEE.
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through a filter with spatial frequency response H(k):

H(k) =
l(surf)h(surf)

2

2
√
π

exp

(
−k2l(surf)2

4

)
, (2.18)

where l(surf) and h(surf)
2

are parameters for correlation length and variance, respec-

tively. In this experiment, rough surfaces were generated using parameter values

suggested in [28]. The value of h(surf) was fixed at λc/20, where λc is the wavelength

corresponding to the center frequency of the GPR pulse. The value of l(surf) was

variable, with potential values of {λc/4, λc/2, λc, 2λc}.

Soil background

The soil half-space was characterized by a homogeneous background with spatially-

invariant values of dielectric constant ε
(soil)
r , conductivity σ(soil), and permeability

µ
(soil)
r = µ0. Dispersion effects were ignored, so all electromagnetic parameters were

also assumed constant with respect to frequency. Both ε
(soil)
r and σ(soil) were variable,

with potential values to characterize a wide range of soils as tabulated in [10]: ε
(soil)
r =

{2, 3, ..., 10} and σ(soil) = {10−7, 10−6, ..., 10−1}.

Random Scatterers

Heterogeneity in the soil half-space was modeled by overlaying many random box-

shaped scatterers onto the background medium, in a manner similar to that used

in [22]. The lower left-hand coordinates of the scatterers were uniformly-distributed:

X(scat) ∼ U(0, 5m), Y (scat) ∼ U(0,max f(n)−2.5cm). The dimensions of the scatter-

ers were also uniformly-distributed: x ∼ U(d, 20cm), y ∼ U(d, 20cm). The dielectric

constant of each scatterer (ε
(scat)
r ) was also random, but drawn from a distribution

that allowed them to appear as perturbations from the background:

ε(scat)r = 1 + ε̃r (2.19)
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ε̃r ∼ logN (µ̃, σ̃), (2.20)

where

µ̃ = log

(
m2

√
v +m2

)
(2.21)

σ̃ =
√

log(1 + v/m2) (2.22)

m = ε(soil)r − 1 (2.23)

v = 0.5. (2.24)

Drawing values from this distribution ensures ε
(scat)
r ≥ 1 and E[ε

(scat)
r ] = ε

(soil)
r . The

conductivity of all scatterers was fixed at σ(soil). Finally, the number of scatter-

ers present in the soil half-space was drawn from a binomial distribution, n ∼

bin(2N (scats), p = 0.5), where N (scats) is a variable parameter indicating the ex-

pected number of subsurface scatterers. Three potential values of N (scats) were used:

{100, 300, 500}.

Size of Data Set

In total, there were 756 possible combinations of the variable soil parameters (9

different values of ε
(soil)
r , 7 values of σ(soil), 4 values of l(surf)/λ, 3 values of N (scats)).

Two unique simulations were performed for each combination of these parameters,

yielding a total of 1512 B-scans from which features were extracted.

2.3.2 Feature Extraction

All of the features described in Section 2.2 were extracted from the 1512 simulated

B-scans. Table 2.2 lists the parameters were used in order to extract features from

this data. The values of σw, δ0, t
′, and K were determined experimentally to yield the

best overall performance, the value of C is arbitrary, the value of ω was determined

by inspection of the transmitted GPR waveform, and the values of N and T are

artifacts of the data simulation.
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Table 2.2: Feature extraction parameters for simulated data experiment

Parameter Description Value
N Number of A-scans per B-scan 100
T 1m temporal sampling rate 1120
σw Window width parameter 30
δ0 MP convergence threshold 0.01
ω Width of MP dictionary elements 200
t′ B-scan row indices 0,70,...,700
K Linear predictor filter order 4

2.3.3 Correlation Analysis

Pairwise correlations between the features and the labels [ε
(soil)
r , σ(soil), l(surf), N (scats)]

were calculated to illustrate the efficacy of each feature in characterizing one or more

soil properties. Figure 2.6 illustrates the correlation of each feature with each of the

four labels. The values of ε
(soil)
r were correlated (or inversely correlated) with most of

the features. This is because ε
(soil)
r greatly affects the signal amplitude, both at the

air/ground interface and within the soil itself, and most of the proposed features are

functions of signal amplitude. Furthermore, σ(soil) was correlated with the matching

pursuits histogram, suggesting that this feature may be indicative of the attenuation

of signals as a function of time. The values of l(surf) are most correlated with the

early-time measurements of LP power, suggesting that the most unpredictable rows

of the B-scan may be due to rough surface scattering. Finally, N (scats) did not

correlate as highly with the matching pursuits histogram as originally hypothesized.

This could be due to insufficient binning of the matching pursuits histogram, or not

enough variation in the values of N (scats) considered in this experiment.

2.3.4 Classification Results

A RVM was used to classify features extracted from the simulated GPR data ac-

cording to the known soil properties. For each multi-class problem, the RVM was

trained using a one-against-all approach, and test observations were assigned to the

41



Figure 2.6: Plot of correlations between features (horizontal axis) and soil labels
(line color) for the simulated GPR experiment. c© 2012 IEEE.

maximum a posteriori (MAP) class. Classification of B-scans according to the soil

labels with the RVM was evaluated via 10-folds cross-validation. Results are shown

in Figure 2.7. Each confusion matrix illustrates overall classification performance,

with truth listed on the vertical axis and classification result on the horizontal. The

percent of B-scans classified correctly is shown at the top of each confusion matrix.

For some of the labels, classification was very good - classifying the simulated GPR

data by ε
(soil)
r yielded an overall accuracy of 97.24% (compared to 11.1% chance

accuracy), and classification by l(soil)/λc yielded an accuracy of 90.41% (compared

to 25% chance accuracy). The result of classification by N (scats) was still relatively

good, achieving an correct classification rate of 76.5% (compared to 33.3% chance

accuracy). Classification by σ(soil) yielded good performance in identifying conditions

with very high values of conductivity, while lower conductivities were often confused.
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Figure 2.7: Confusion matrices illustrating results of RVM classification of ε
(soil)
r

(top-left), σ(soil) (top-right), l(soil)/λc (bottom-left), and N (scats) (bottom-right) for
the simulated data experiment. Vertical axes indicate the the true labels, and hori-
zontal axes indicate the classifier response.

However, others have illustrated that the overall effect of soil conductivity on GPR

is minimal unless the conductivity is very high [20]. The performance of the RVM

in classifying B-scans by soil conductivity confirms these observations.

2.3.5 Regression Results

Unlike classification, which makes “hard” decisions, regression allows for the quan-

titative estimation of the underlying soil parameters. RVM-based regression results

are shown in Figure 2.8. Each plot shows the regression output for each observation

(dashed line) and the true values of the soil parameters (solid line). The goodness-

of-fit is summarized by the RMS error, which is shown above each plot.

As in classification, RVM regression was able to very accurately estimate ε
(soil)
r
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Figure 2.8: Results of RVM regression for predicting ε
(soil)
r (top-left), σ(soil) (top-

right), l(soil) (bottom-left), and N (scats) (bottom-right) for the simulated data exper-
iment. The blue line in each plot indicates the true values of each parameter, and
the dashed red line indicates the regression estimate.

(RMSE = 0.11217) and l(soil)/λc (RMSE = 0.29765). Furthermore, estimation of

σ(soil) was accurate only for the highest values, yielding an RMSE of 0.006. The only

major difference between the regression and classification results was the estimation

of N (scats), which yielded a RMSE of 589. This may be due to the fact the N (scats)

is the expected number of subsurface scatterers, rather than the exact number.

Overall, however, regression results illustrate that it is possible to not only predict

the different environmental conditions that were imposed on the simulated data, but

also how much different those conditions are. In practical applications, it may be

useful for a context-dependent processing strategy to tell when the underlying soil

context changes dramatically (such as after a heavy rainfall) rather than subtly (such

as a light misting of rain).
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2.4 Evaluating GPR Context Features: Field Data Experiment

A second experiment was performed to evaluate the GPR features on field-collected

data. The features were used to predict measurements of soil moisture and tem-

perature by a meteorological station at an Eastern U.S. government test site. The

following subsections describe the data set used in this experiment, and present the

results of RVM regression.

2.4.1 Field-collected data set

The GPR data used in this experiment was collected at an temperate Eastern U.S.

government test site for a total of 12 days, over 4 campaigns of 2-5 days each be-

tween March and August, 2008. The data collection site was comprised of two dirt

and three gravel test lanes in which anti-tank landmines were emplaced. As data

was collected, the GPR operator maintained an array height of approximately 7-8”

above the ground. The GPR made several overlapping passes down each lane, in

opposite directions, to ensure than the entire width of the lane was covered. For this

experiment, only the first and last passes on each lane from each day are considered

to ensure maximum possible change in soil conditions between passes.

A meteorological station was installed at the test site to collect various data re-

garding air and soil conditions. Figure 2.9 shows a photograph of the meteorological

station located between a dirt lane and a gravel lane. The station recorded air tem-

perature, humidity, atmospheric pressure, wind speed, wind direction, precipitation,

dirt temperature (at depths of 1/2, 2, 4, and 8 in.), gravel temperature (at depths of

1/2, 2, 4, and 8 in.), soil moisture (at depths of 2, 4, and 8 in.), short-wave radiation

(both up and down-welling), and long-wave radiation (both up and down-welling) at

5-minute intervals.

Only measurements of dirt temperature, gravel temperature, and soil moisture
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Figure 2.9: Photograph of the meteorological station located at the Eastern US
test site. The station is located between a dirt and gravel lane, with soil probes
embedded in each lane.

were used in this experiment, since the other measurements were determined to be

irrelevant or did not show significant variation. The soil measurements were averaged

over depth since the only variation with respect to depth appeared to be scaling.

The soil measurements were also averaged over each day since accurate timestamp

information was not available to cross-register the GPR data with the meteorological

data.

2.4.2 Feature Extraction

After the data was collected, a prescreener was run on the raw GPR data to flag lo-

cations of detected anomalies, and background B-scans of length 100 were extracted

prior to each prescreener alarm. Examples of the background data prior to pre-

screener alarms are shown in Figure 2.10. The 23-dimensional contextual features

were then extracted from the background B-scans. Table 2.3 lists the parameters

that were set for performing feature extraction on the field data.
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Figure 2.10: Example B-scans of field-collected GPR data collected on dirt (top)
and gravel (bottom) lanes at an Eastern US test site. The images show background
data collected prior to a prescreener alarm. The anomaly that was flagged can be
seen at the far right of each image. c© 2012 IEEE.

Table 2.3: Feature extraction parameters for field data experiment

Parameter Description Value
N Number of A-scans per B-scan 100
T 1m temporal sampling rate 512
σw Window width parameter 5
δ0 MP convergence threshold 0.01
ω Width of MP dictionary elements 25
t′ B-scan row indices 0,30,...,300
K Linear predictor filter order 4

47



2.4.3 Correlation Analysis

To assess the efficacy of each individual feature in characterizing the meteorological

data, each feature was correlated with the soil measurements and the correlations are

plotted in Figure 2.11. The results are quite intuitive; soil moisture is most corre-

lated with the energy, reflection coefficient, and early-time LP power features, since

moisture has a great impact on overall soil permittivity. Because the measurements

of dirt and gravel temperature were very similar, both measurements are correlated

with the late-time MP histogram. If we recall the results of the simulated data

experiment, the late-time MP histogram was most correlated with conductivity. A

relationship has been shown to exist between soil conductivity and temperature [85],

and is probably related to the drying of soils as temperature increases. Therefore, the

correlation analysis suggests that the matching pursuits histogram may be indicative

of soil temperature as well as conductivity.

2.4.4 Regression Results

As in the simulated data experiment, regression was performed on the kernel-mapped

features using the RVM and evaluated via 10-fold cross-validation. Results of using

RVM regression to predict the soil measurements from the contextual features are

shown in Figure 2.12. Because the measurements of dirt and gravel temperature were

similar, the regression performance was also similar, achieving estimation accuracy

within 5-6 degrees (the RMSE for dirt temperature was 5.05, and for gravel was 6.05).

More importantly, these results illustrate that the RVM is able to distinguish between

major differences in temperature. Soil moisture was estimated with relative accuracy

for higher values (≥ 0.14), but there appears to be an offset in regression estimates

for lower values. Lower values of moisture correspond to lower conductivity, and as

was seen in the simulated data experiment, it is difficult to estimate low values of

conductivity using these features.
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Figure 2.11: Plot of correlations between features (horizontal axis) and measured
soil properties (line color) for the simulated GPR experiment. c© 2012 IEEE.

Figure 2.12: Results of RVM regression to predict dirt temperature (left), gravel
temperature (center), and soil moisture (right) from contextual features extracted
from field data. The RMS error is shown at the top of each plot.

49



2.5 Discussion

Physics-based features were developed to provide a low-dimensional representation

of GPR data that may be useful for context learning. To verify the efficacy of the

proposed contextual features, experiments were performed using simulated and field-

collected GPR data. In these experiments, the proposed features were extracted from

a variety of B-scans collected over varying environmental conditions, and a RVM

was then applied to the features for predicting the underlying soil properties. In

the simulated data experiment, it was shown that several underlying soil parameters

were predictable from the features. In the field data experiment, the quantitative

estimates of subsurface temperature and moisture were obtained via RVM regression.

Although in both experiments, some soil properties were more accurately pre-

dicted than others, in all cases the proposed features were characteristic of major

differences in the soil context. In context-dependent learning for detecting buried

threats in GPR data, it may be important for the algorithm to tell when such ma-

jor contextual shifts take place. Given features that are indicative of environmental

context, a statistical model could be used to group contextually-similar observations

into distinct clusters. Then, a mixture of context-specific classifiers could potentially

be learned as an alternative to global classification. The next several chapters will

discuss several context modeling techniques that apply statistical mixture models for

clustering the features proposed in this chapter into distinct contexts.
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3

Basic Context Learning Techniques

Although many algorithms have been developed to automate buried threat detec-

tion in GPR data, past comparisons have shown that certain algorithms perform

best under specific environmental conditions [41]. In the previous chapter, it was

shown that multiple environmental factors can be characterized from GPR data by

using the proposed contextual features. This chapter presents two basic techniques

for clustering these features into distinct contexts, a process referred to as context

learning, using both supervised and unsupervised techniques. Each of the learned

contexts should should be representative of a unique set of environmental condi-

tions. If supervised learning is employed, the contexts should correspond to known

contextual labels (e.g. soil type). Unsupervised learning, however, may cluster the

features in a more informative way. For example, a broad category of observations

with the context label “dirt” could potentially be clustered into many sub-contexts

using unsupervised learning.

After context learning is performed, unique classifiers may be trained on the data

from each context. In this work, an ensemble of relevance vector machines (RVMs)

are used to perform context-dependent algorithm fusion. Context-dependent learning
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allows for the fusion weights of several algorithms to be learned according to their

relative performance in different environments. Therefore, it would be expected

that context-dependent fusion would yield better overall target discrimination per-

formance than a similar global fusion approach, which does not incorporate any

contextual information.

The following sections introduce basic techniques which have been proposed in

past work for supervised [86–88] and unsupervised [89] approaches to context learn-

ing. The RVM is also introduced as a classification model that can be implemented in

a context-dependent learning framework. Experimental results using field-collected

GPR data are presented to highlight the benefits and disadvantages of supervised

and unsupervised context learning, and motivates the use of nonparametric Bayesian

methods for achieving additional performance improvements.

3.1 Supervised Context Learning

If contextual ground truth is available for the training data, a supervised approach

to context learning may be used. For example, if training data is collected over M

several distinct soil types with labels c = 1, 2, ...,M , the individual soil labels could

potentially be useful in learning the model parameters. A simple technique for M -

ary supervised clustering of the contextual features X(C) is a Gaussian hypothesis

test [86, 87]. Using Bayes’ theorem, posterior inference can be performed by

p(cn = m|x(C)
n ) =

p(x
(C)
n |cn = m)p(cn = m)∑M

j=1 p(x
(C)
n |cn = j)p(cn = j)

=
N (x

(C)
n |µ̂m, Σ̂m)p(cn = m)∑M

j=1N (x
(C)
n |µ̂j, Σ̂j)p(cn = j)

,

(3.1)

where µ̂m and Σ̂m are the maximum-likelihood estimates of the mean and variance of

X(C) conditioned on context m. If a uniform prior is assumed, i.e. p(cn = m) = 1/M
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for m = 1, 2, ...,M , (3.1) can be simplified as

p(cn = m|x(C)
n ) =

N (x
(C)
n |µ̂m, Σ̂m)∑M

j=1N (x
(C)
n |µ̂j, Σ̂j)

. (3.2)

Often for visualization or interpretation purposes, one may wish to make “hard”

classifications of individual observations x
(C)
n . In that case, individual points may be

assigned to the maximum a priori (MAP) class:

cn = argmax
m

p(cn = m|x(C)
n ) (3.3)

If the prior on c is uniform, (3.3) simplifies to

cn = argmax
m

N (x(C)
n |µ̂m, Σ̂m). (3.4)

Although supervised context modeling allows for characterizing known context

labels from the contextual features, obtaining such labels for training data can be

very difficult. There may be little apparent variation between soils over which data

was collected, eliminating the possibility of using qualitative labels, or equipment

for measuring soil properties could be too expensive or unavailable. If equipment

is available, how to properly threshold soil measurements to yield distinct contexts

is still an open question. In contrast, unsupervised learning allows for clustering

without the need for discrete labels, eliminating many of these potential issues. A

basic technique for unsupervised context learning is presented in the following section.

3.2 Unsupervised Context Learning

Several techniques for unsupervised clustering exist for grouping together proximate

observations in a multidimensional feature space [70–72]. To draw a parallel to the

supervised context learning technique that was described in Section 3.1, consider a

Gaussian mixture model (GMM) as an unsupervised context model. Observations
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drawn from a GMM come from a weighted sum of M Gaussian densities, each with

its own mean µm and covariance Σm, according to the mixture proportions πm. The

likelihood function of the GMM is given by

p(x(C)
n |π,µ,Σ) =

M∑
m=1

πmN (x(C)
n |µm,Σm). (3.5)

The parameters of the GMM may be learned several ways. Conventionally, the

expectation-maximization (EM) algorithm is used to iteratively maximize the likeli-

hood of the data given the parameters [90]. Alternatively, Variational Bayesian (VB)

inference provides an alternative technique for learning the full posterior densities of

the model parameters [91]. After estimating the model parameters (π̂m, µ̂m and Σ̂m,

for m = 1, 2, ...,M), posterior probabilities of the resulting contexts may be obtained

by

p(cn = m|x(C)
n ) =

π̂mN (x
(C)
n |µ̂m, Σ̂m)∑M

j=1 π̂mN (x
(C)
n |µ̂j, Σ̂j)

. (3.6)

3.3 Within-Context Target Classification

After contexts are learned in the contextual space defined by features X(C), unique

classifiers must be learned for each context using the target features X(T ). In this

work, the relevance vector machine (RVM) [83, 84] is used as a classification model

due to its sparseness properties and probabilistic output. The RVM is a Bayesian

solution to inference for the logistic discriminant classifier, given by

yn = wTφ
(
x(T )
n

)T
, (3.7)

p(tn|x(T )
n ) = σ(yn)tn [1− σ(yn)]1−tn , (3.8)

where w are the D-dimensional classifier weights, tn is a binary class label (0, 1) for

observation n, σ(·) denotes the logistic sigmoid function, and φ(·) denotes a kernel
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transformation. The RVM incorporates sparseness-promoting priors on w, given by

wd ∼ N
(
0, α−1d

)
, d = 1, 2, ..., D, (3.9)

αd ∼ Gamma
(
a0 = 10−6, b0 = 10−6

)
. (3.10)

Sparseness is promoted in the RVM weights by assuming the weights are statistically

independent of one another, and a non-informative Gamma prior is placed on the

precisions α governing the weights. By performing Bayesian inference to obtain

a posteriori estimates of the weights, the values of α tend to infinity for weights

corresponding to irrelevant inputs. This yields a posterior infinitely peaked at zero,

and the irrelevant dimensions in effectively receive a weight of zero. Those dimensions

receiving nonzero weight are referred to as relevance vectors. Details regarding RVM

inference are provided in Appendix B.

In context-dependent learning, classification is set up as a mixture of RVMs.

Extending (3.7) and (3.8) to a mixture of classifiers yields

ynm = wT
mφ
(
x(T )
n

)T
, m = 1, 2, ...,M, (3.11)

p(tn|cnm = 1,x(T )
n ) = σ(ynm)tn [1− σ(ynm)]1−tn , (3.12)

where cnm is a binary-coded latent variable that is equal to 1 if the true context of

x
(C)
n is context m. The latent variables are inferred from the results of context iden-

tification. If a supervised context model is known, c is not random and the mixture

of RVMs essentially can be learned as M individual RVMs trained for each of the

known contexts. Otherwise, c must be treated probabilistically and be incorporated

into the learning of each wm. Details regarding learning mixtures of RVMs are also

included in Appendix B.

An advantage of the RVM over other sparse kernel machines, such as the support

vector machine (SVM) [92], is that it yields probabilistic outputs - i.e. posterior
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probabilities of tn. The probabilistic RVM output can be easily used in context-

dependent learning by integrating them over uncertainty in the underlying context.

The SVM, by contrast, yields distances from the decision boundary that are not

easily interpretable in a Bayesian framework. Another advantage of the RVM is that

φ need not be a kernel function that satisfies Mercer’s conditions [70,83]. Therefore,

the direct kernel, i.e. φ(x
(T )
n ) = [1,x

(T )
n ] may be used in training the RVM. The

effect of using a direct kernel is that irrelevant features will receive zero weight, so

training a direct-kernel RVM is therefore a de facto method for feature selection. In

context-dependent learning, using direct-kernel RVMs provides an intuitive way for

performing context-dependent feature selection; features that are relevant for classi-

fication in a particular context will receive nonzero weight from the classifier trained

for that context [86–89].

After training the (supervised or unsupervised) context model on the contextual

features X(C) and the mixture of RVMs on the target features X(T ), the outputs

of both must be combined to yield a posterior probability of an observation being

a target. This is accomplished by integrating the within-context target posteriors

obtained from the RVM, p(tn|cnm = 1,x
(T )
n ), over the context posteriors obtained

from the target model, p
(
cnm = 1|x(C)

n

)
:

p
(
H1|x(C)

n

)
=

M∑
m=1

p
(
tn|cnm = 1,x(T )

n

)
p
(
cnm = 1|x(C)

n

)
(3.13)

The resulting posterior probability, p(H1|x(C)
n ), may then be thresholded for the pur-

pose of making hard decisions. Overall performance may be measured by evaluating

the probability of detection (PD) and false alarm rate (FAR) as a function of the

decision threshold, and plotting the receiver operating characteristic (ROC) curve.
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Table 3.1: Alarm Distribution by Soil Type and Ground Truth

Soil Clutter (%) Targets (%) Total (%)

Dirt 9,356 (72.7%) 933 (54.3%) 10,289 (70.5%)

Gravel 2,658 (20.6%) 393 (22.9%) 3,051 (20.9%)

Asphalt 245 (1.9%) 212 (12.4%) 457 (3.1%)

Concrete 620 (4.8%) 178 (10.4%) 798 (5.5%)

ALL 12,879 (100%) 1,716 (100%) 14,595 (100%)

3.4 GPR Data for Evaluating Landmine/IED Detection Performance

Both techniques for basic context-dependent learning were evaluated on a large set

of GPR data collected between 2009-2010 at two different government test sites in

the continental U.S. One site was located in an arid region of the Southwestern U.S.,

and the other site was located in a temperate region of the Eastern U.S.. Data was

collected with the NIITEK GPR over prepared dirt, gravel, asphalt, and concrete

lanes with emplaced targets and clutter objects. The targets included 10 different

types of AT landmines with varied metal content, 155mm artillery shells, and several

IED targets consisting of a pressure plate, main charge, and command wire. Several

metal and nonmetal clutter objects, including empty holes, were also considered as

potential false alarm sources. The GPR made several passes down each test lane to

ensure the entire area was covered, yielding a total of 171 target encounters and 524

clutter encounters over a total collection area of 92,340 m2.

A derivative of the LMS prescreener [38] was run offline on the GPR data, and

detected a total of 14,595 anomalies. These locations are referred to as alarms,

and are passed to feature-based algorithms for classification as targets or clutter.

Table 6.1 illustrates the distribution of prescreener alarms across the four types of

lane construction (referred to henceforth as “soils”):

Contextual features were extracted from a 512×100 B-scan from the same channel
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Figure 3.1: Left: Scatter plot of 3-D PCA projection of contextual features, with
points colored by qualitative soil label. Center: Same scatter plot, but with points
colored by MAP supervised context. Right: Confusion matrix illustrating overall
performance of supervised context learning, evaluated by 10-fold cross-validation.

of each alarm consisting of the previous background data. Furthermore, the edge

histogram descriptor (EHD) [44], the spectral correlation features (SCF) [49], and the

hidden Markov model (HMM) [42] algorithms were run on the anomalous responses

to yield confidence values for each alarm. In performing algorithm fusion, the target

feature vector x(T ) consisted of the prescreener, EHD, SCF, and HMM confidence

values. Unless otherwise noted, all evaluations on GPR data that are presented in

this dissertation were performed on this data set.

3.5 Experimental Results

3.5.1 Supervised Context Learning

Figure 3.1 illustrates supervised modeling being performed on the 3-D principal com-

ponents analysis (PCA) projection of the 23-dimensional contextual GPR features

discussed in the previous chapter. Because this data was collected over four soil types,

one may want to leverage that prior contextual information and train a supervised

context model to infer the soil type from the background features.

In Figure 3.1, the leftmost plot illustrates the scatter of the projected features
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colored according to the known soil labels. The points tend to cluster according to

soil type, which was expected since the previous chapter illustrated their efficacy

in characterizing multiple soil properties. The center plot illustrates the supervised

classification result of each point, with each point colored according to the MAP

class determined by the Gaussian hypothesis test. The results are summarized in

the confusion matrix at right. Overall, 76.4% of observations’ contexts were identi-

fied correctly. However, the misclassifications show some interesting results. Data

collected over dirt and gravel are often confused with one another, as are asphalt

and concrete. This result suggests a degree of commonality between these pairs of

contexts. Additionally, gravel is confused with dirt much more often than dirt is mis-

taken for gravel. This result, coupled with the fact that there are over three times

as many dirt observations than gravel, suggests that perhaps the dirt context could

potentially be sub-divided into several smaller sub-contexts with distinct properties.

The advantages and disadvantages of supervised context modeling are clearly il-

lustrated by these results. Depending on the labels being used, supervised learning

can be an easy way to verify that the contextual features are indicative of underly-

ing environmental factors. However, this is only true if the labels are relevant. If

the labels are irrelevant or redundant, supervised context learning may be forced

to differentiate between labeled contexts that have similar or no impact on sensor

performance. Conversely, if the labels are too broad, the resulting clusters may not

be indicative of underlying contextual factors.

3.5.2 Unsupervised Context Learning

Figure 3.2 illustrates examples of unsupervised context learning performed on the

same PCA-projected features as in Figure 3.1. The top two plots illustrate the result

of training a 3-component GMM. As shown by the scatterplot at top-left, the GMM

converged to one large Gaussian cluster and two smaller ones. Two contexts are
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primarily composed of dirt and gravel points, and the third context is spread across

all four soil types. In contrast, consider the bottom two plots of Figure 3.2, which

consider training an 8-component GMM on the PCA-projected features. In this case,

the asphalt and concrete data are assigned to different contexts; concrete data are

mostly assigned to Context 2, and asphalt data are mostly assigned to Context 7.

The remaining contexts are split between dirt and gravel data.

The differences between the 3-component GMM and the 8-component GMM

illustrate that the performance of unsupervised context learning can be substantially

affected by the order of the model. Although the results obtained from the various

clusterings can be interpreted in a variety of ways, they may not necessarily be

indicative of the underlying phenomenology. For example, asphalt and concrete were

grouped together by the 3-component GMM and discriminated by the 8-component

GMM. Although an argument could be made that both are paved roads, one could

also argue that each may constitute a unique propagation environment. Therefore, it

is important for the model order to be selected carefully; If M is too small, the model

will be too simple and could be under-trained, and if M is too large, the model will

be too complex and may run the risk of over-training. This dilemma is addressed by

the nonparametric Bayesian learning techniques that are proposed in the following

chapters.

3.5.3 Context-Dependent Fusion Results

The following examples illustrate the results obtained from training RVMs for al-

gorithm fusion using the contextual information obtained through supervised and

unsupervised context modeling. In these examples, RVMs were trained on the differ-

ent confidence values obtained for each alarm that was flagged in the data set. The

prescreener, EHD, SPSCF, and HMM algorithms utilize complementary information

and it has been shown that algorithm fusion aids in performance [41]. Figure 3.4

60



Figure 3.2: Top-Left: Scatter plot of 3-D PCA projection of contextual features,
with points colored by MAP context determined by a 3-component GMM. Top-Right:
Similarity matrix comparing the makeup of the 3 unsupervised contexts to the known
soil labels. Bottom-Left: Scatter plot of 3-D PCA projection of contextual features,
with points colored by MAP context determined by an 8-component GMM. Bottom-
Right: Similarity matrix comparing the makeup of the 8 unsupervised contexts to
the known soil labels.
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Figure 3.3: RVM discriminant weights learned for algorithm fusion in each su-
pervised context. Each stem represents a particular dimension of the target feature
space, the vertical axis represents the weight value, and soil contexts are indicated
by line color.

illustrates the discriminant weights obtained by the RVMs for algorithm fusion in

the labeled dirt, gravel, asphalt, and concrete soil contexts. Each context, illustrated

by the different colors of lines, requires a unique weighting of the four algorithms’

confidences. This result suggests that the contextual labels are relevant, otherwise

the weighting would be the same across all four contexts. Because RVMs are being

used to learn the discriminant weights, a unique subset of the algorithms are selected

as relevant for each context while irrelevant algorithms are completely ignored. It

also appears that other than the prescreener, no one algorithm is universally relevant

since each of the three feature-based algorithms receives zero weight in at least one

context.

Figure 3.4 shows similar results, but with unsupervised context modeling. The

top plot illustrates the RVM weights obtained for each of the 3 unsupervised contexts,

and the bottom plot illustrates the weights obtained for 8 contexts. Interpretation of

these results can be very difficult and requires experimenting with different orders of
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Figure 3.4: RVM discriminant weights learned for algorithm fusion in both 3 (top)
and 8 (bottom) unsupervised contexts. Each stem represents a particular dimension
of the target feature space, the vertical axis represents the weight value, and soil
contexts are indicated by line color.

context models and evaluating performance for each case. As shown in the 3-context

case, SPSCF is the only algorithm to ever receive zero weight, and does so in 2 of the

3 contexts, while all other algorithms receive nonzero weight in all contexts. In the

8-context case, the prescreener, EHD, and SPSCF are all irrelevant in at least one

context each, and the HMM appears to be relevant in all 8 contexts. For both of these

cases, the weights are difficult to interpret and performance may be better-evaluated

from the ROC curves.

3.5.4 Detection Performance

Classification performance was evaluated using 10-fold cross-validation over emplaced

objects, rather than alarms, to ensure that training and testing did not occur on dif-

ferent observations of the same object. Multiple alarms on the same object were

consolidated in scoring by taking the maximum of all alarm confidences over a single

pass registered within a radius of 0.25 m from an object’s center. Scoring was per-
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formed using the Mine Detection Algorithm Scoring (MIDAS) tool provided by the

Institute for Defense Analyses [93].

Figure 3.5 illustrates the ROC curves for basic context-dependent fusion, using

both supervised and unsupervised context models, and compares performance to a

globally-implemented RVM that incorporates no contextual information. The FAR

for benchmark PDs of 0.85, 0.90, and 0.95 for each algorithm are shown in the legend.

The context-dependent techniques, plotted as solid lines, illustrate varying degrees

of improvement over the RVM, the performance of which the 90% confidence region

is shaded. Somewhat surprisingly, supervised context learning yielded little improve-

ment to performance. The ROC for context-dependent fusion with the supervised

context model shows lower FAR than the RVM at low PD levels (< 0.65), but at

high PD (> 0.85) the performance is essentially the same. This result suggests that

perhaps the soil labels that were used are not reflective of the true contextual factors

in this problem.

Meanwhile, unsupervised context learning appears to yield more useful contextual

information. However, the degree of improvement is dependent on the order of the

context model. If the model order is chosen correctly, significant improvements

over the single RVM are possible at high PD. These results suggest that although

unsupervised context modeling has the potential to leverage contextual information

that is beyond qualitative context labels, performance is highly dependent on the

context model order which must be determined experimentally.

3.6 Discussion

In this chapter, basic techniques for context-modeling and context-dependent fusion

were introduced. Supervised and unsupervised techniques were proposed for model-

ing context distributions in the features X(C). Evaluation of the supervised context

model yielded intuitive results, and the interpretation of the unsupervised context
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Figure 3.5: ROC curves for basic context-dependent fusion techniques, compared
to non-context-dependent RVM fusion (black dashed) and the individual fused algo-
rithms (dotted). The ROC consists of PD versus FAR, measured in false alarms per
square meter, as a function of decision threshold.

model’s behavior was dependent on the model order. Relevance vector machines

were also introduced for the purpose of training context-specific classifiers on the

target features X(T ). The choice of using a supervised or unsupervised context model

appeared to have substantial impact on RVM training and overall model behavior.

Finally, performance of context-dependent algorithm fusion was evaluated on a large,

geographically-diverse GPR data set consisting of landmine and IED signatures and

many false alarms. The potential for context-dependent fusion to improve upon the

performance of non-context-dependent RVM fusion was illustrated, although the de-
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gree of performance improvement depends on the specific model being used. While

unsupervised context modeling led to the greatest performance improvements, the

degree of improvement was highly dependent on the model order, i.e. the number of

contexts being considered.

These results clearly illustrate that although unsupervised context learning may

be advantageous, conventional techniques for clustering that depend on prior knowl-

edge of the model order, M , may be prone to over- or under-training. If M is too

small, too few unique contexts will be learned, which results in an under-trained

model. If M is too large, too many contexts will be learned, resulting in an over-

trained model. Furthermore, parametric models such as GMMs are difficult to imple-

ment in high-dimensional spaces due to the oft-cited curse of dimensionality [70–72],

hence the use of PCA in projecting the 23-D context features to 3-D. Rather than

set the order of the context model experimentally by evaluating performance with

different numbers of contexts, it may be preferable for an algorithm to learn the

optimal number of contexts automatically. Likewise, it may also be preferable to

use all of the available contextual features rather than potentially sacrifice informa-

tion through dimensionality reduction. These items are addressed in remainder of

this dissertation, which proposes Bayesian inference for nonparametric context mod-

els that facilitate learning of the optimal model order and the discovery of latent

features in high-dimensional spaces.
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4

Generative Nonparametric Context Learning

The previous chapter illustrated that unsupervised context learning has potential

benefits over supervised learning. Contexts learned from an unsupervised model may

be more informative than subjective context labels, which may yield improvements

to overall detection performance. However, unsupervised context learning is also

a problem of model order selection, which translates to specifying the number of

contexts to learn. Learning too many or too few contexts may run the risk of over-

or under-training.

An alternative to specifying the model order is to use a nonparametric mixture

model that facilitates learning an effective number of mixture components. In this

chapter, two nonparametric context models are proposed. The first model was based

on the Dirichlet Process Gaussian Mixture Model (DPGMM), originally published

by Blei and Jordan [67]. The DPGMM consists of an infinite-order GMM with a

sparseness-promoting Dirichlet process (DP) prior, and is useful for clustering when

the number of clusters is unknown but can be learned from the data.

It is possible that some contexts may be characterized by different contextual

factors, and some contexts may require more or less information to distinguish them
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from others. The second context model proposed in this chapter, the DP Mixture

of Factor Analyzers (DPMFA), is motivated by this hypothesis. Like the DPGMM,

the DPMFA can be used to learn the number of clusters present in a data set as well

as the latent features describing each cluster. The DPMFA model used in this work

was originally proposed by Wang et al. [94].

Both nonparametric context models proposed in this chapter were trained using

a generative learning. In other words, the context models were trained on the con-

textual features only, without regard to the target features and target/clutter labels

for each observation. Both models were learned using variational Bayesian (VB)

inference.

The following sections introduce the concept of VB inference, nonparametric

models and the DP. Both nonparametric context models are then introduced through

synthetic data examples. Finally, experimental results are presented to compare the

merits of using these models in context-dependent algorithm fusion for buried threat

detection with GPR.

4.1 Bayesian Inference and Variational Learning

4.1.1 Point Estimation of Model Parameters

Robust parameter estimation is particularly important in unsupervised learning,

since labels cannot be used to verify the accuracy of the model. As was alluded

to with the GMM presented in Section 3.2, conventional parameter estimation tech-

niques yield point estimates of model parameters. The most common method for

parameter estimation is maximum-likelihood (ML). The ML estimates, ΘML, of the

model parameters Θ are found by maximizing the likelihood of the training data X,

given by:

ΘML = argmax
Θ

p (X|Θ) (4.1)
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In some cases, ML estimates can be found analytically (e.g., estimating the mean

and variance of a Gaussian distribution) and in other cases estimates must be found

iteratively (e.g., the EM algorithm applied to GMMs) [90]. A common criticism

of ML parameter estimation is that it is prone to over-fitting [71, 95]. Therefore,

an alternative to ML is maximum a posteriori (MAP) parameter estimation. MAP

estimation is less prone to over-fitting because prior information is used to regularize

inference. This can be seen in Bayes’ theorem,

p (Θ|X) =
p (X|Θ) p (Θ)

p (X)
=

p (X|Θ) p (Θ)∫
Θ
p (X|Θ) p (Θ) dΘ

, (4.2)

where p(X|Θ) is referred to as the likelihood, p(Θ) is the prior, and p(X) is the evi-

dence. The MAP estimate is obtained by maximizing the posterior density, p (Θ|X):

ΘMAP = argmax
Θ

p (Θ|X) (4.3)

However, ΘMAP is still a point estimate, effectively approximating the posterior

uncertainty as a Dirac delta function, when a full posterior density may be desired

for some applications. Calculating the posterior density involves solving to obtain

the functional form of p (Θ|X). This procedure is known as Bayesian inference.

4.1.2 Bayesian Inference

According to (4.2), the only information required to solve for the posterior density

are the likelihood and prior densities. The likelihood is obtained from the statistical

model chosen for the problem, the prior density expresses uncertainty in the param-

eters’ values, and the evidence is effectively a normalizing constant. In many cases,

the evidence integral may be difficult to compute. A common technique for circum-

venting these potential issues is by assuming a conjugate prior distribution [95,96].

A conjugate prior is defined as a distribution that, when paired with a particular

model, yields a posterior distribution with the same functional form. The benefit
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of using conjugate priors is that the parameters of the posterior density can be

calculated as a function of the prior density’s parameters (known as hyperparameters)

and the data. Since the posterior is known to be of the same form as the observation

model, the full posterior density can be determined exactly by simply updating its

parameters.

For a simple example, consider a Bernoulli process as the observation model.

Under this model, x = (0, 1) with p(x = 1) = θ and p(x = 0) = 1− θ. The likelihood

function of n successes (x = 1) and m failures (x = 0) is therefore

p(n,m|θ) =
n!

m!(n−m)!
θn(1− θ)m (4.4)

For a Bernoulli model, the corresponding conjugate prior is the Beta density with

hyperparameters α and β given by

p(θ) =

{
(α−1)!

(β−1)!(α−β−1)!θ
α−1(1− θ)α−β−1, 0 ≤ θ ≤ 1

0, otherwise.
(4.5)

Solving for the posterior density yields

p(θ|n,m) =
p(n,m|θ)p(θ)∫

θ
p(n,m|θ)p(θ)dθ

=

n!
m!(n−m)!

θn(1− θ)m (α−1)!
(β−1)!(α−β−1)!θ

α−1(1− θ)α−β−1∫ 1

0
n!

m!(n−m)!
θn(1− θ)m (α−1)!

(β−1)!(α−β−1)!θ
α−1(1− θ)α−β−1dθ

=

n!(α−1)!
m!(n−m)!(β−1)!(α−β−1)!θ

n+α−1(1− θ)n+α−m−β−1
(α−1)!n!(m+β−1)!(n+α−m−β−1)!
(β−1)!(α−β−1)!m!(n−m)!(α+n−1)!

×
∫ 1

0
(n+α−1)!

(m+β−1)!(n+α−m−β−1)!θ
n+α−1(1− θ)n+α−m−β−1dθ

. (4.6)

Note that the integrand in the denominator of (4.6) is Beta(n + α,m + β), and

70



therefore integrates to 1. Simplifying (4.6) therefore yields

p(θ|n,m) =
(n+ α− 1)!

(m+ β − 1)!(n+ α−m− β − 1)!
θn+α−1(1− θ)n+α−m−β−1

= Beta(n+ α,m+ β). (4.7)

In this example, the posterior is simply another Beta distribution, as was the

prior. The posterior parameters are also a a function of the hyperparameters. There-

fore, rather than solving Bayes’ theorem explicitly, the posterior can be expressed in

terms of the updated parameters. If Bayes’ theorem is being applied sequentially,

updating the posterior as more data is observed, the posterior becomes the prior

for the next iteration. By exploiting conjugate priors, Bayesian inference can pro-

vide a computationally-efficient technique for obtaining a full expression of posterior

uncertainty.

Although conjugate priors are chosen to facilitate mathematical tractability, they

should still reflect a priori information about the data. Fortunately, many conju-

gate priors offer a wide range of uncertainty expression through various parameter

settings, including settings that represent little or no prior information, such as

Beta(1,1) or a Gaussian with large variance. It is important in any Bayesian infer-

ence problem to use a prior that makes sense for the problem, and choosing param-

eters that allow for controlled regularization, since in many cases certain parameter

settings may yield unexpected over- or under-regularization.

Conjugate priors are useful for determining the full posterior uncertainty in pa-

rameters of canonical distributions, but complex models often do not lend to a fully-

conjugate solution. Often, these types of models involve latent variables; examples

include the GMM and HMM, from which draws are conditioned on a finite mixture

of component densities. Although point estimates of model parameters could still be

obtained via iterative techniques such as such as the EM algorithm [70–72, 90], the
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same concerns regarding over-fitting discussed previously still apply. Alternatively,

one could seek to approximate the posterior by making certain assumptions about

the a priori dependence of the model parameters. One technique for estimating the

posterior, which has roots in statistical physics, is variational inference.

4.1.3 Variational Bayesian Inference

Variational (VB) Bayesian inference is a technique for approximate posterior infer-

ence in many problems where the evidence integral is intractable [67,68,71,84,91,97–

101]. Since the evidence integral cannot be computed directly, variational inference

is used to maximize a lower bound on it. Using this approximation for the evidence,

a subsequent approximation to the posterior can be calculated and is referred to as

the variational posterior :

q(Z) = p̂(Θ|X) (4.8)

To determine the lower bound on the evidence integral, first rewrite the evidence as

p(X) =
p(X,Θ)

p(Θ|X)

=
p(X,Θ)q(Θ)

p(Θ|X)q(Θ)
. (4.9)

Taking the logarithm of both sides of (4.9) yields

log[p(X)] =

∫
Θ

log [p(X)] q(Θ)dΘ

=

∫
Z

log

[
p(X,Θ)qΘ)

p(Z|X)q(Θ)

]
q(Θ)dΘ

=

∫
Z

log

[
p(X,Θ)

q(Θ)

]
q(Θ)dΘ +

∫
Z

log

[
qΘ)

p(Θ|X)

]
q(Θ)dΘ

= F [q(Θ)] + KLD[q(Θ)||p(Θ|X)] (4.10)
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The first term of (4.10) is the negative of what is known in statistical physics as free

energy [102], and is therefore referred to here as negative free energy (NFE) F [q(Θ)]:

F [q(Θ)] =

∫
Θ

log

[
p(X,Θ)

q(Θ)

]
q(Θ)dΘ. (4.11)

The second term of (4.10) is the Kullback-Leibler divergence (KLD) between the

variational posterior, q(Θ), and the true posterior, p(Θ|X). The KLD is a dis-

tance metric between two probability densities, and by definition is always positive.

Therefore, rearranging (4.10) illustrates that the NFE is a true lower bound on the

log-evidence [99]:

F [q(Θ)] = log[p(X)]−KLD[q(Θ)||p(Θ|X)] (4.12)

The NFE thereby serves as the objective function for the VB optimization problem

since maximizing F [q(Θ)] also maximizes the lower bound on the evidence integral.

However, the true posterior cannot be calculated explicitly (hence the purpose of

VB). A calculable definition of NFE can be obtained by rewriting the numerator of

the fraction term in (4.11) as p(X|Θ)p(Θ). This yields an expression of the NFE

as the difference between the expected log-likelihood (with respect to the variational

posterior) and the KLD between the variational posterior and the prior:

F [q(Θ)] = E [log p(X|Θ)]−KLD[q(Θ)||p(Θ)] (4.13)

Maximizing the NFE is generally a high-dimensional optimization problem, due

to the dimensionality of X and the number of free parameters. To facilitate the

optimization procedure, q(Θ) is generally restricted to a factorized density given by

q(Θ) =
∏
i

q(θi). (4.14)

This approach is referred to as the mean-field approximation [98]. The factorized

density given by (4.14) restricts inference by implicitly assuming that Θ can be par-

titioned into disjoint groups of statistically independent parameters (indexed by i).
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Note that there is no restriction on the functional forms of the individual q(θi). The

factorized density allows for the optimization of the NFE with respect to one param-

eter at a time. This can be illustrated by first substituting (4.14) into (4.11). To

further consolidate notation, let qi = q(θi), q−i =
∏

j 6=i qj. The following derivation

is based on that found in [71]:

F(q) =

∫
q(Θ) log

[
p(X,Θ)

q(Θ)

]
dΘ

=

∫ ∏
i

qi

[
log p(X,Θ)−

∑
i

log qi

]
dΘ

=

∫ [∏
i

qi

]
log p(X,Θ)dΘ−

∫ [∏
i

qi

]∑
i

log qidΘ

=

∫
qi

[∫
q−i log p(X,Θ)dΘ−i

]
dΘi −

∫
q−i

[∫
qi log qidθi

]
dΘ−i

−
∫
qi

[∫
q−i log q−idΘ−i

]
dΘi (4.15)

The second and third terms of (4.15) can be consolidated by noting that
∫
qidθi =∫

q−idΘ−i = 1, since q must be a valid PDF. This yields

F(q) =

∫
qi

[∫
q−i log p(X,Θ)dΘ−i

]
dΘi

∫
qi log qidΘi −

∫
q−i log q−idΘ−i

=

∫
qi

[∫
q−i log p(X,Θ)dΘ−i

]
dΘi −

∫
qi log qidΘi −H [q−i]

=

∫
qiEq−i [log p(X,Θ)]dΘi −

∫
qi log qidΘi −H [q−i]

=

∫
qi log p̃(X,Θ)dΘi −

∫
qi log qidΘi, (4.16)

where H [q−i] indicates the entropy operator applied to q−i. Here, Eq−i [log p(X,Θ)] is

defined as the expected joint log-density of X and Θ, with respect to the variational
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density q−i. The new density, p̃(X,Θ), is given by

log p̃(X,Θ) = Eq−i [log p(X,Θ)]−H [q−i] (4.17)

p̃(X,Θ) =
exp{Eq−i [log p(X,Θ)]}

exp{H [q−i]}
. (4.18)

One may recognize (4.16) as the negative KLD between qi and p̃(X,Θ). Therefore,

F(q) will be maximized when KLD[qi||p̃(X,Θ)] is minimized, which occurs when

the two densities are equal. The variational density of parameter θi that maximizes

the NFE is then given by

log qi = Eq−i [log p(X,Θ)]−H [q−i] (4.19)

qi =
exp{Eq−i [log p(X,Θ)]}

exp{H [q−i]}
. (4.20)

An interesting observation is that (4.20) is very similar to Bayes’ theorem, except

that it involves expectations of p(X,Θ). By using (4.19) and (4.20), an iterative

process for optimizing the NFE follows. In a process very similar to the EM algo-

rithm, the variational posterior of each parameter is updated by using expectations

computed with respect to the other parameters. Since the bound to log-evidence

is convex, each iteration is guaranteed to increase the NFE [98]. When all of the

parameters are updated, the NFE may be re-evaluated and updates continue until

it converges, defined as increasing less than a predetermined amount.

4.2 Dirichlet Process

The Dirichlet process (DP) is a common choice of prior density for nonparametric

mixture models that facilitates learning of latent variables [103]. The DP has been

described as a distribution of distributions that is governed by the scaling parameter

α and a base distribution G0:

G ∼ DP (G0, α) (4.21)
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Random draws (θn, n = 1, 2, ...) from G exhibit clustering properties described

by a Pólya urn scheme [104], which implies that some of the θi will have identical

values represented by θ∗m, m = 1, 2...,. This process is typically referred to as a

Chinese restaurant process, which as described as follows: Customer xn walks into a

restaurant in which there are an infinite number of tables, and the customer must

choose a table denoted as θn. The probability that a customer chooses to sit at a

particular table is as follows:

p (θn|θ1, θ2, ..., θn−1) =

{
θ∗m with probability numn−1(θ∗m)

n−1+α
New draw from G with probability α

n−1+α
(4.22)

In (4.22), numn−1 (θ∗m) denotes the number of people who are already sitting at

table θ∗m, and α is the DP scaling parameter. The processes described by (4.22) sug-

gests that as the restaurant fills up with people, new customers will be more likely

to select tables at which a large number of people are sitting. However, there is a

probability (which is a function of α) that a new customer will select an unoccu-

pied table. From the Chinese restaurant process, G can be described as a discrete

probability density that assigns mass to an infinite number of atoms,

G =
∞∑
m=1

πmδθ∗m , (4.23)

where the atoms are delta functions located at each θ∗m. The mixing proportions

given by πm can be estimated by sampling from G and calculating the proportions

of customers seated at each table.

Another construction of the DP that constrains the proportions to sum to unity

is the stick-breaking process [105]. In a stick-breaking construction, the values of πm

can be expressed as the relative proportions of an infinite number of random pieces
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sequentially broken off a unit-length stick:

πm (v) = vm

m−1∏
j

(1− vj) , m = 1, 2, ...,∞ (4.24)

vm ∼ Beta (1, α) (4.25)

The sizes of the individual pieces, vm, that are broken off the remainder of the

stick are drawn from a Beta distribution controlled by the α parameter. Similar

to the Chinese restaurant process, the stick-breaking process yields a G consisting

of a countably infinite set of atoms, for which the vast majority have negligible

proportion:

G =
∞∑
m=1

πm (v) δθ∗m (4.26)

However, in this case, the values of πm are a function of v according to (4.24).

The DP has been shown to be useful as a prior density in nonparametric mixture

models, and the stick-breaking process is particularly amenable to variational learning

since it can be incorporated into a fully-conjugate graphical model [67, 69, 100, 101].

Nonparametric models differ from parametric models not in that they have no pa-

rameters, but in that the number of unique parameters (i.e., the effective model

order) controls model complexity rather than just the shape of the PDF. A DP prior

is a useful mechanism for regulating the number of parameters, thereby effectively

determining the model order and avoiding overfitting. These approaches are gener-

ally referred to as Dirichlet process mixtures, in which G is a conjugate prior density

for an infinite number of mixture components. Therefore, the unique draws θ∗m are

the parameters that govern the mth component, for m = 1, 2, ...,∞.

In the following sections, two types of DP mixtures are presented to automate

learning of an unsupervised context model of unknown order. First is the DP Gaus-

sian mixture model (DPGMM), which facilitates learning the number of GMM com-
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ponents. The second model is the DP mixture of factor analyzers that, like the

DPGMM, will automate learning of the number of clusters as well as a locally-

reduced dimensionality for each cluster.

4.3 Dirichlet Process Gaussian Mixture Model

The GMM was shown in Chapter 3 as an example of a basic unsupervised context

model that clusters the contextual features X(C) into M contexts, with each context

represented by a single Gaussian mixture component. However, the behavior and

overall benefit of using a fixed-order GMM depends on whether the model order

(i.e., the number of contexts) was set correctly [89]. The DPGMM improves upon

the fixed-order GMM by allowing the effective number of mixture components to be

learned from the data by performing Bayesian inference [67]. The likelihood function

of the DPGMM context model is given by

p
(
x(C)|v,µ,Λ−1

)
=

∞∑
m=1

πm (v)N
(
x(C)|µm,Λ−1m

)
, (4.27)

where µm are the component means, Λm are the component precision (inverse covari-

ance) matrices, and πm (v) are the mixing proportions drawn from the stick-breaking

process given by (4.24). VB inference can be performed on this model by assum-

ing conjugate priors on all of the model parameters, as well as the hyperparameter,

α, controlling the stick-breaking process. The data-generating process for a fully-

conjugate DPGMM is as follows:

1. Draw α ∼ Gamma (τ10, τ20)

2. Draw vm|α ∼ Beta (1, α)

3. Draw θ∗m|G0 ∼ N
(
µ∗m|ρ0, u

−1
0 Λ∗m

−1)W (Λ∗m|B0, ν0) ,m = 1, 2, ...

4. Calculate mixture proportions πm (v) = vm
∏m−1

j=1 (1− vj),m = 1, 2, ...
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5. For n = 1, 2, ..., N

(a) Draw indicator variable cn|v ∼ Multinomial (π)

(b) Draw data
(
x
(C)
n |cnm = 1

)
∼ N

(
x
(C)
n |θ∗m

)
In practice, the DPGMM is initialized with T clusters, where T is an arbitrarily

large number, using the k-means algorithm. In the experiments presented in this

chapter, the following hyperparameter settings were used: u0 = 1, τ10 = τ20 = 1,

ν0 = D(C), B0 = D(C)ID(C) , and ρ0 was set equal to the sample mean of X(C).

These hyperparameter settings were not optimized for any particular problem, as

the DPGMM did not appear to be very sensitive to their settings for the problems

that were considered. Details on variational inference for the DPGMM, including

derivations of all posterior update equations and the negative free energy, are included

in Appendix C.

The stick-breaking prior imposes a clustering effect on the parameters of each

cluster that consolidates them to a few unique values. For the purpose of context-

dependent learning, a pruning criterion was imposed to ensure that all contexts con-

tained enough points for performing classification. Therefore, all clusters accounting

for less than 1% of points were pruned from the model to yield M clusters such

that M << T . The following variational posteriors were obtained for the model

parameters:

q (µm,Γm) = N
(
µm|ρm, u−1m Λ−1m

)
W (Λ|νm,Bm) ,m = 1, 2, ..., T (4.28)

q (cn) = Multinomial (φn) (4.29)

For new (test) values of x(C), context posteriors are obtained by integrating out

the model parameters to yield an a posteriori mixture of Student’s t-distributions
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Figure 4.1: Example of the DPGMM learned on a mixture of 9 Gaussian distribu-
tions. The top row illustrates the predictive density, and the bottom row illustrates
the component membership matrix, at learning iterations 1-9.

given by

p
(
cnm = 1|x(C)

n

)
=

tωm

(
x
(C)
n |ρm,Wm

)
∑M

j=1 tωj

(
x
(C)
n |ρj,Wj

) , (4.30)

where context m is represented by a Student’s t-distribution with ωm = νm+1−D(C)

degrees of freedom, mean ρm, and covariance Wm = [(um + 1) /umωm] B−1m [91].

Figure 4.1 illustrates an example of the DPGMM being trained on a mixture

of 9 bivariate Gaussian distributions arranged in a diamond shape. The top row

illustrates the predictive density obtained by integrating over the model parameters

at VB iterations 1, 3, 5, 7, and 9. The bottom row illustrates the membership

matrix for each of 300 training points. Variational inference was initialized with

T = 20 mixture components, so the membership matrix is initially distributed evenly

between the 20 columns. As the number of iterations increases, the memberships

consolidate to 9 columns. Furthermore, the predictive density converges to a mixture

of the 9 true densities from which the training data was drawn.
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In many model parameter estimation problems, it is difficult to perform inference

reliable with high-dimensional data. This is referred to as the curse of dimensionality

in most statistics texts [70–72], and the problem manifests itself in the DPGMM.

Each covariance matrix requires the estimation of D(C)(D(C) + 1)/2 unique parame-

ters, where D(C) is the dimensionality of the context feature space, and this could be

very expensive computationally if D(C) is large. Furthermore, the number of sam-

ples N must be much greater than D(C) in order to avoid over-fitting, which becomes

more difficult to achieve if D(C) is large. Therefore, the DPGMM was trained on the

3-D PCA projection of the contextual features for this work.

It is possible that the various contexts over which data was collected may be char-

acterized by different contextual factors, suggesting that a unique number of features

might characterize each context. Therefore, another nonparametric context model is

proposed in the following section for learning a low-dimensional projection of each

cluster. This model, the Dirichlet process mixture of factor analyzers (DPMFA) can

potentially avoid the curse of dimensionality without having to specify the number

of latent feature dimensions.

4.4 Dirichlet Process Mixture of Factor Analyzers

Recall Chapter 2 in which a variety of contextual features were proposed for charac-

terizing multiple environmental factors from time-domain GPR data. It is possible

that different environmental factors, and therefore features, may characterize the

various contexts over which data was collected. For example, distinguishing between

a dirt road and a concrete road may only need to be based on one factor, the soil

dielectric constant. However, some concrete roads may be reinforced with rebar;

therefore, subsurface heterogeneity may need to also be considered for distinguishing

different types of concrete roads from a dirt road. The DPGMM assumes that all

of the learned contexts have the same dimensionality, and therefore utilize the same
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contextual information. In contrast, it could possibly be beneficial to use a context

model that not only facilitates learning the number of contexts, but also the local

dimensionality of each context.

One technique for dimensionality reduction that has been given a Bayesian treat-

ment, and therefore is easily implemented in the proposed context-dependent learning

framework, is factor analysis [71,98]. Closely related to PCA, a factor analysis model

expresses the data x as a projection of K D-dimensional latent factors, A, onto the

K × 1 scores, s, biased by D × 1 mean, µ. The projection error is assumed to be

Gaussian with covariance matrix ψ−1I, so that

p (x|A, s,µ) = N
(
x|As + µ,ψ−1I

)
. (4.31)

Equation (4.31) is the same distribution assumed for the projection error of PCA,

with the only difference is that in factor analysis the covariance ψ−1I is assumed to

be diagonal rather than isotropic.

A mixture of factor analyzers (MFA) is similar to a GMM, except that each

component is described by a local variant of (4.31):

p (x|A, s,µ) =
M∑
m=1

πmN
(
x|Ams + µm,ψ

−1
m I
)

(4.32)

A VB inference approach to the MFA was proposed in [68], and like the original

VBGMM [91] assumed a Dirichlet prior on the mixture proportions. Furthermore,

the MFA assigns an independent loading matrix Am to each mixture component, for

which learning may be difficult on a small data set or if outliers are present.

An more feasible approach is to impose a binary-coded zm on each mixture com-

ponent to selects vectors from a common loading matrix [94]:

p (x|A, s,µ) =
M∑
m=1

πmN
(
x|Adiag (zm) s + µm,ψ

−1
m I
)

(4.33)
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Although performing Bayesian inference on the MFA will yield a full posterior density

for each of the M mixture components, the effective number of mixture components

could only be found by using a posteriori point estimates of π and applying a thresh-

old. Instead, a stick-breaking prior may be assumed for the mixing proportions π,

yielding a Dirichlet process mixture of factor analyzers (DPMFA):

p (x) =
M∑
m=1

πm (v)N
(
x|Adiag (zm) s + µm,ψ

−1
m I
)

(4.34)

Originally proposed as part of graphical model for classifying missing data [94], the

DPMFA is used in this work for generative context modeling in the feature space

X(C). The stick-breaking prior on π (v), given by (4.24), will impose a pruning effect

on extraneous mixture components. This forces the corresponding elements of π

to zero. A Bernoulli prior is also placed on the elements of zm to automate factor

selection for each local cluster. The data-generating process for a fully-conjugate

DPMFA context model is as follows:

1. Draw α ∼ Gamma (τ10, τ20)

2. Draw vm|α ∼ Beta (1, α) , m = 1, 2, ...

3. Calculate mixture proportions πm (v) = vm
∏m−1

l=1 (1− vl),m = 1, 2, ...

4. Draw γdk ∼ gamma (e0, f0) , d = 1, 2, ..., D(C), k = 1, 2, ..., K

5. Draw Adk ∼ N
(
Adk|0, γ−1dk

)
, d = 1, 2, ..., D(C), k = 1, 2, ..., K

6. Draw ζmk ∼ Beta (a0/K, b0(K − 1)/K) , k = 1, 2, ..., K, m = 1, 2, ...

7. Draw zmk ∼ Bernoulli (zmk|ζmk) , k = 1, 2, ..., K, m = 1, 2, ...

8. Draw ψmk ∼ Gamma (ψmj|g0, h0) , k = 1, 2, ..., K, m = 1, 2, ...
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9. Draw µm ∼ N
(
µm|ρ0, u

−1
0 diag

(
ψ−1m

))
, m = 1, 2, ...

10. Draw δ ∼ Gamma (δ10, δ20)

11. For n = 1, 2, ..., N

(a) Draw sn ∼ N (sn|0, δ−1I)

(b) Draw indicator variable cn|v ∼ Multi (π)

(c) Draw data
(
x
(C)
n |cnm = 1

)
∼ N

(
x
(C)
n |Adiag (zm) sn + µm,ψ

−1
m I
)

The DPMFA model was initialized with T = 20 clusters, using the k-means

algorithm. Furthermore, the number of factors was capped at K = 10. In the

experiments presented in this chapter, the following hyperparameter settings were

used: a0 = 1, b0 = 0.5, e0 = g0 = δ10 = 0.1, f0 = h0 = δ20 = 10, and τ10 = τ20 = 1.

These hyperparameter settings were chosen to limit sparseness in the factor loadings

and scores, and allow selection to be governed by inference of z. However, the

values were not specifically optimized for any particular problem and were used for

experiments with synthetic as well as real data. Variational inference yields the

following variational posteriors on the model parameters:

q (Adk) = N (Adk|ωdk, σdk) (4.35)

q (sn) = NK (sn|ξn,Λn) (4.36)

q (zmk) = Bernoulli (ηmk) (4.37)

q (µm) = ND(C) (ρm,Um) (4.38)

q (ψtj) = Gamma (gtj, htj) (4.39)

q (cn) = Multinomial (φn) (4.40)

In practice, the variational expectations of the factor loadings (ωdk), scores (ξn),

selectors (ηmk), as well as the mixture component means (ρm), variances (ψtj), and
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memberships (φn) were used as the learned model parameters. Additionally, a prun-

ing criterion was imposed on the mixture components. All components accounting

for less than 1% of points were pruned from the model to yield M clusters such that

M << T .

Figure 4.2 presents an example of a factor analysis model to highlight the be-

havior and performance of the DPMFA model. In this example, data was generated

from a known factor loading matrix, mixture component means, and selection vec-

tors while using random scores. The factor loading matrix was specified by having

pairs of features share a single factor loading. These shared elements of A were set

to one while the remaining elements were set to zero. The factor scores, S, were

randomly drawn from a zero-mean, unit-variance Gaussian distribution. The data

was partitioned into three clusters, and unique factor selection vectors were specified

for each. The first cluster (samples 1-500) utilized three factors, the second cluster

(501-1000) utilized two factors that were distinct from those in the first cluster, and

the third cluster (1001-1500) also utilized two factors, each shared with one of the

two other clusters. Furthermore, the first cluster was biased by a mean value of 5,

the second cluster was biased by a mean value of -5, and the third cluster remained

zero-mean. White noise with a variance of 0.5 was then added to the data.

In this example, the model converged to a solution within 11 VB iterations, and

yielded the expectations to the model parameters shown in Figure 4.3. Although the

learned loading matrix does not match the structure of the true A from Figure 4.2,

the factors are sparse and shared by two features at a time. This discrete selection of

factors is summarized by the bottom-left image, which illustrates the learned factor

selection vectors. Finally, the clustering results are summarized by the expected

memberships at bottom-right, which are illustrated by the probabilities Φ. Clearly,

three distinct clusters have been learned. The means show that the correct cluster

locations were learned (having means of 5, -5, and 0), and the variances are close to
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Figure 4.2: An example factor analysis problem to illustrate DPMFA model per-
formance. Top-left: true factor loading matrix (A); Top-right: factor scores (S),
Bottom-left: factor selectors (Z), Bottom-right: Original data (X).

the true variance of 0.5.

Latent feature models like the DPMFA can also be thought of as a technique for

signal/image denoising. By learning the latent factors present in multi-dimensional

data, the most informative parts of the data are retained. Considering this synthetic

example, the data matrix X can be thought of as an N × D image, in which the

features corresponding to the shared factors are the informative parts. Reproducing

X by substituting the posterior expectations of the model parameters into 4.34 yields

an image similar to the original data, but with the noise removed and the informative

features retained.

As shown by the example, the DPMFA performs joint clustering and feature se-

lection in an unsupervised manner. In context modeling, this is important because

certain contexts may be explained by different environmental factors. For example,
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Figure 4.3: A posteriori expected values of the DPMFA model parameters learned
from the example data shown in Figure 4.2. Top-left: learned loading matrix (A);
Top-right: learned factor scores (S); Center-left: learned factor selectors (Z); Center-
right: learned cluster memberships (φ); Bottom-left: learned component means (ρ);
Bottom-right: learned component variances (ψ)

distinguishing between GPR data collected on a homogeneous dirt lane, but in dif-

fering moisture conditions, may only be dependent on one feature (e.g., soil dielectric

constant). However, distinguishing these contexts from paved or heavily-cluttered

soils may require additional information (e.g. subsurface heterogeneity). Given a

large number of contextual features for characterizing multiple environmental fac-

tors, the DPMFA is useful because it automates learning of the number of contexts
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Figure 4.4: Results of denoising the example data shown in Figure 4.2 with
DPMFA. Left: original data, shown in the bottom-right of Figure 4.2; Right: de-
noised data, calculated from learned DPMFA model parameters.

and also the local dimensionality of each.

4.5 Experimental Results

Preliminary results of using the DPGMM in context-dependent algorithm fusion

were presented in [79] using a smaller data set considering only antitank landmine

targets. In this section, experimental results are presented for using the DPGMM and

DPMFA in context-dependent algorithm fusion on the data set that was summarized

in Section 3.4. First, the results of context learning are analyzed by comparing

the contexts learned by the DPGMM and DPMFA to the known labels. Then, the

RVM weights learned for performing context-dependent algorithm fusion using either

DPGMM or DPMFA contexts are compared. Finally, the detection performance of

context-dependent algorithm fusion using both context models are compared to the

basic approaches originally shown in Figure 3.5.

4.5.1 Context Learning with the DPGMM

The DPGMM was trained on the 3-D PCA projection of the normalized GPR context

features. Initialization was set to T = 30 clusters using the k-means algorithm. The
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Figure 4.5: Scatterplot comparing results of context learning using the DPGMM
on the GPR contextual features to the known soil labels. Left: Scatter plot of 3-D
PCA projection of contextual features, with points colored by qualitative soil label.
Right: Same scatter plot, but with points colored by MAP DPGMM component.

hyperparameters were set according to the same values used in the synthetic data

example, with D(C) = 3 since the PCA-projected context features were used. Of the

30 initial clusters, the DPGMM converged to 19 within the 1% pruning threshold.

Figures 4.5 and 4.6 illustrates the performance of the DPGMM in clustering the

context features. The left panel of Figure 4.5 illustrates the scatterplot of the PCA-

projected context features, with the points colored by the known soil labels. The

right panel shows the contexts obtained by assigning points to the MAP DPGMM

component. The similarity matrix comparing the contexts learned by the DPGMM

to the known labels is shown in Figure 4.6.

Contexts 2, 3, 4, 6, 9, 10, 12, 13, 14, and 16 were predominantly dirt. Context 18

was predominantly gravel. Contexts 1, 5, 7 and 15 were roughly split between dirt

and gravel, suggesting a possible overlap of soil properties between these two labeled

categories. Asphalt made up most of Context 11, and concrete made up most of
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Figure 4.6: Similarity matrix comparing DPGMM clustering results to the known
soil labels.

context 8. Context 17 was roughly split between asphalt and concrete. No context

overlapped significantly between one of the unpaved soil types and one of the paved

categories. These results suggest that in a large GPR collection such as this, there

may be a wealth of contextual information beyond the scope of the available soil

labels that can be learned using a nonparametric model.

The learned model parameters are shown by Figure 4.7, which illustrates the

cluster means, pm, and Figure 4.8, which illustrates the covariances Λm. These plots

illustrate that each context corresponds to a Student’s-t distribution with unique

mean and covariance.

4.5.2 Context Learning with the DPMFA

The DPMFA was trained on the full 23-dimensional GPR context features using the

same hyperparameter settings from the synthetic example. Figure 4.9 illustrates the

similarity matrix obtained by comparing the known soil labels to the MAP contexts

assigned by DPMFA clustering. In this case, 12 contexts were learned that met the

90



Figure 4.7: Means of clusters learned by the DPGMM context model. The hori-
zontal axis represents the dimension of the PCA-projected features X(C), the vertical
axis represents the mean of each cluster that was learned, and colors represent the
individual contexts.

1% pruning threshold. The data collected over dirt and gravel were split into many

sub-contexts by the DPMFA. Most of these sub-contexts were split between dirt

and gravel data, most of which were predominantly comprised of dirt data, but one

(Context 7) was predominantly gravel. Asphalt was split into two distinct contexts

(3 and 10), and was rarely confused with any of the other soil types. The majority

of observations in context 2 were concrete.

Figure 4.10 illustrates the expected model parameters that were learned using VB

inference on the DPMFA model. The learned factor loadings (each vector normalized

to unit-magnitude for illustration purposes) are shown in the top-left panel, the

learned scores (scaled by the corresponding factor magnitude) are shown at top-right,

the learned selection vectors are shown at bottom-left, and the cluster membership

probabilities are shown at bottom-right. The membership matrix illustrates that

most observations fall into clusters 1, 3, 6, 7, 8, 9, 10, 11, 13, 15, 17, and 20. The

factor selection matrix shows that most of these mixture components only utilize the
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Figure 4.8: Covariance matrices of clusters learned by the DPGMM context model.
Each panel represents the covariance matrix of the Student-t mixture components
obtained by integrating over the DPGMM parameters.

first factor that was learned. However, clusters 1, 8, 13, 17, and 20 also utilize factor

3, but the scores assigned to factor 3 are small (as are the elements of the factor

vector itself).

An interesting observation here is that the learned factors were constructed from

projections of different contextual features. The features with the greatest magnitude

in factor 1 are features 9-14, which correspond to the late-time portions of the MP

histogram. Factor 1 may therefore characterize soil heterogeneity and attenuation

properties. Meanwhile, the features with greatest magnitude in factor 3 are features

6 and 7, which correspond to early-time portions of the MP histogram. Therefore,
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Figure 4.9: Similarity matrix comparing DPMFA clustering results to the known
soil labels.

factor 3 may characterize the near-surface properties of the soil. Surprisingly, features

1-2 (energy and reflection coefficient) have a very small magnitude in both factors.

Figure 4.11 illustrates the expected means, ρm, of each of the 23-dimensional

clusters learned from the DPMFA. Figure 4.8 illustrates the variances (i.e. projection

residual), ψm, of each dimension within each cluster. Each context is characterized

by a unique mean and covariance. Several of the contexts have means located near

zero, while others appear to be on the outskirts of the feature space.

The variances of the DPMFA-learned contexts should not be considered neces-

sarily as variances in the Gaussian sense, but also the residual of the factor analysis

projection of X(C). Therefore, the features corresponding to nulls in variance are

best characterized by the factors selected for that context. By this observation, each

context appears to have a unique set of nulls (although contexts 1, 9, and 11 appear

to be very similar), suggesting that each context uses different contextual feature in-

formation. Furthermore, each context yields high variance on features 14-23, which

correspond to the LP power features. Recall from Chapter 2 that LP power decreases
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Figure 4.10: A posteriori expected values of the DPMFA model parameters learned
from the GPR contextual features. Top-left: learned loading matrix (A); Top-right:
learned factor scores (S); Bottom-left: learned factor selectors (Z); Bottom-right:
learned cluster memberships (φ).

exponentially with respect to temporal index, suggesting that the feature is charac-

teristic of attenuation effects in soil. Therefore, the high variance that the DPMFA

yielded for the LP power features may be an artifact of fitting a linear model to

features that exhibit a nonlinear relationship.

4.5.3 Context-Dependent Fusion Results

Context-dependent algorithm fusion was evaluated using the DPGMM and DPMFA

context models. Like the basic supervised and unsupervised context learning tech-

niques presented in Chapter 3, posterior context probabilities obtained from the

DPGMM and DPMFA were used in training a mixture of RVMs for weighting the

confidences of the Prescreener [38], EHD [44], SPSCF [49], and HMM [42] algorithms.

The RVM weights obtained for the DPGMM contexts are plotted in Figure 4.13.
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Figure 4.11: Means of clusters learned by the DPMFA context model. The horizon-
tal axis represents the dimension of the features X(C), the vertical axis represents the
mean of each cluster that was learned, and colors represent the individual contexts.

The HMM, by far the best-performing single algorithm on this data set, received

the most weight and was never irrelevant. Compared to the HMM, the other three

algorithms were assigned very small weight and their relative weights varied with

respect to context. Each algorithm, with the exception of HMM, was irrelevant in

at least one context.

Figure 4.14 illustrates the RVM fusion weights obtained for each of the contexts

learned from the DPMFA context model. In the DPMFA contexts, the HMM did

not dominate fusion as much as it did with respect to the DPGMM contexts. In one

context (context 8), it was actually irrelevant. Meanwhile, the prescreener received

large weight in several contexts, but it was irrelevant in one context (context 11).

Each context therefore yielded a unique weighting of the four on-board algorithms,

with each algorithm being considered irrelevant in at least one context.
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Figure 4.12: Covariance matrices of clusters learned by the DPGMM context
model.

4.5.4 Detection Performance

Context-dependent fusion was evaluated using the same 10-fold, object-based cross-

validation method used to generate the results shown in Chapter 3. The ROC

curves plotted Figure 4.15 illustrates the results of context-dependent fusion using

the DPGMM and DPMFA context models, which are respectively plotted in red and

blue. Performance is compared to global RVM fusion (black dashed) which is not

context-dependent, as well as the individual algorithms (dashed lines). The plot is on

the same axes scale as Figure 3.3 for easy comparison to the basic context-dependent
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Figure 4.13: RVM discriminant weights learned for algorithm fusion in each
DPGMM context. Each stem represents a particular dimension of the target fea-
ture space, the vertical axis represents the weight value, and the individual contexts
are indicated by line color.

Figure 4.14: RVM discriminant weights learned for algorithm fusion in each
DPMFA context. Each stem represents a particular dimension of the target fea-
ture space, the vertical axis represents the weight value, and the individual contexts
are indicated by line color.
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Figure 4.15: ROC curves for context-dependent fusion, using either the DPGMM
or DPMFA context models, compared to non-context-dependent RVM fusion and
the individual fused algorithms. The ROC consists of PD versus FAR, measured in
false alarms per square meter, as a function of decision threshold.

techniques discussed in Chapter 3. Results illustrate that significant performance im-

provements (i.e., outside the 90% confidence bounds indicated by the shaded region)

over the non-context-dependent RVM are possible by incorporating nonparametric

Bayesian, generative context learning.

Context-dependent fusion with the DPGMM, which did not utilize soil labels and

also did not require the specification of the number of contexts to learn, achieved

significant reductions in FAR at 0.92 ≥ PD ≥ 0.25. Context-dependent fusion us-

ing the DPMFA context model, which used even less a priori information than the
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DPGMM, also yielded significant FAR reduction for the same PD range. It should

be noted that both techniques performed better than context-dependent fusion us-

ing the supervised contexts trained according to the known soil labels, indicating

that additional useful contextual information can be exploited using nonparametric

models.

4.6 Conclusions

In this chapter, generative techniques for Bayesian learning nonparametric context

models were presented and evaluated on the proposed GPR context features. The

two context models were the DPGMM and the DPMFA. Both techniques utilize DP

priors to facilitate learning of the number of clusters (contexts) present in the data.

The DPGMM was trained on the 3-D PCA projection of the context features, while

the DPMFA was able to learn a unique local dimensionality reduction for each cluster.

Performance analysis showed that nonparametric models can potentially exploit in-

formation that is not described by available qualitative context labels. Experimental

results on field-collected GPR data illustrated that using generative nonparametric

context models to aid in context-dependent fusion yields significant reductions in

FAR for a wide range of PD when compared to conventional fusion.

In contrast to the generative learning techniques that were proposed in this chap-

ter, the following chapter presents discriminative techniques for GPR context mod-

eling. In this chapter, context models were trained on the context features only

without to regard to the target features or the target/clutter labels of each observa-

tion. Alternatively, discriminative learning would find contexts that yield the best

overall classification of targets from non-targets. Instead of considering both con-

text identification and algorithm fusion as independent tasks, discriminative learning

would consider them jointly to yield contexts that allow for the best classification of

targets and clutter in each.
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5

Discriminative Nonparametric Context Learning

In the previous chapter, two generative approaches to context-dependent learning

were proposed in which the context model and classifiers were learned independently

of one another. In generative context learning, contexts were learned based on the

distribution of the context features and not with regard to the target/clutter class

labels. In contrast, it may be desirable to learn a context-dependent classifier in a

discriminative manner. Discriminative learning may be useful in finding contexts

that allow for the best separation of the target and clutter classes. 1

In this chapter, two approaches are proposed for discriminative context learning.

The first is a discriminative treatment of the DPGMM context model coupled with

RVM classifiers. The second is a similar technique from the literature that utilizes

non-sparse linear classifiers and operates on the joint context and target features.

A comparison of both models’ behavior is illustrated through several examples with

synthetic data. Finally, both techniques were evaluated for GPR algorithm fusion

and performance was compared to previous approaches.

1 This chapter is derivative of previously published work [21]
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5.1 Generative vs. Discriminative Learning

Statistical classification approaches often fall into one of two categories: generative

or discriminative models. A generative model describes how likely the given data X

was generated, and involves learning parameters Θ that define the likelihood function

p(X|Θ). Most density estimation techniques fall under the umbrella of generative

models, including the GMM, HMM, and the k-nearest neighbor density estimate

[70–72]. Discriminative models seek to describe how data is classified, and involve

learning parameters of the conditional PDF of the labels t, i.e. p(t|X,Θ). Most

classifiers would therefore be considered discriminative models, including Fisher’s

linear discriminant [72], support vector machines (SVMs) [92], and RVMs [83,84].

In the previous chapters, generative techniques were proposed for training a con-

text model (e.g., GMM, DPGMM, DPMFA) without regard to the target/clutter

labels associated with each observation. Although the learned contexts may be

reflective of underlying environmental factors, they may not necessarily allow for

the best discrimination between targets and clutter. Because the ultimate goal of

context-dependent learning is to improve target discrimination across varying envi-

ronments, it is important to consider the potential benefits of discriminative context

learning. Discriminative context models can be framed as a special case of the

mixture-of-experts family of models, which are summarized in the following section.

5.2 Mixture-of-Experts Models

In many classification problems, a single linear model may not be sufficient for dis-

criminating between classes. Therefore, many nonlinear classification models have

been proposed. These including techniques such as polynomial discriminant analy-

sis [72], decision trees [70] and random forests [106], neural networks [70, 72], and

sparse kernel machines including SVMs [92] and RVMs [83, 84]. For each of these
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techniques, several parameters must be “tuned” to avoid over- or under-training.

Such tuning parameters include the order of a polynomial discriminant function, the

pruning criteria used in tree-based methods, the number of hidden layers in a neural

network, or the Gram matrix used in training an SVM or RVM. Context-dependent

classification is a clear example of a problem requiring a nonlinear decision model.

However, it is important to avoid the pitfall of insufficient training due to poor

parameter selection while still maintaining the ability to discriminatively train the

classifier.

Mixture-of-experts models are a family of classification and regression techniques

that approximate a nonlinear model by an mixture of locally-linear “expert” models.

The most representative of this family of classifiers is the hierarchical mixture of

experts (HME) [107], in which the distribution of the binary class label, t, conditioned

on each of m = 1, 2, ...,M experts is given by

p (t|x,wm) = σ
(
wT
mx
)t [

1− σ
(
wT
mx
)]1−t

, (5.1)

where wm are the weights associated with expert m, and σ(·) denotes the logistic

sigmoid function.

The HME utilizes a linear gating network of p = 1, 2, ...P nodes, each corre-

sponding to an associated binary variable, zp = {0, 1}. The value of zp drawn from

a Bernoulli distribution given by

p (zp|x,vi) = σ
(
vTp x

)zp [
1− σ

(
vTp x

)]1−zp
, (5.2)

where vp are the parameters of the distribution governing node p.

Given the state of the gating network, the conditional distribution on the labels,

t, takes the form

p (t|x,W, τ , z) =
M∏
m=1

[
σ
(
wT
mx
)t [

1− σ
(
wT
mx
)]1−t]ζm

, (5.3)
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where

ζm =
P∏
p=1

z̄p. (5.4)

The parameter z̄p allows for the nesting of sub-networks, so that

z̄i =

{
zp if m is in the left sub-tree of p

1− zp otherwise.
(5.5)

The HME is learned discriminatively, and ML [107] and Bayesian [108] approaches

have been proposed. However, the same caveats regarding model order that were

discussed for probabilistic mixture models in Chapter 3 also apply to the HME. The

order of the HME model is given by P , the number of unique nodes, and M , the

number of experts. Both must be specified, and improper selection of P and M could

lead to over- or under-training, which could result in poor performance.

This chapter considers two methods for discriminative context learning based on

the HME paradigm, but the linear gating network is replaced with a network based

on the DPGMM, which was originally presented in Chapter 4. The DPGMM gating

network allows for a nonparametric model, facilitating learning of the number of

expert component classifiers, using previously-developed learning methods.

The two methods being considered for discriminative context learning differ in

the features used for classification and clustering, as well as their accommodation

of sparse classification models. The first technique is based on those proposed in

the Chapter 4, and involves replacing the linear gating network of the HME with a

DPGMM, and the logistic experts with RVMs. Thus, this approach is referred to as

the DPGMM-RVM. A novel property of the DPGMM-RVM is that it seeks to learn

the DPGMM in the contextual features, while also training the RVMs on the target

features [21].

The second discriminative context model is based on the infinite quadratically-
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gated mixture of experts (IQGME) [94]. The IQGME also utilizes a DPGMM gating

network, but performs classification and clustering in the same feature space. There-

fore, it is not amenable to sparse classifiers. The derivations of both the DPGMM-

RVM and IQGME are presented in greater detail in Section 5.3, and performance is

compared in a series of synthetic data examples in Section 5.4.

5.3 Discriminative Context Models

Consider the DPGMM context model whose likelihood function is given by (4.27).

The stick-breaking prior is initialized with a truncation level of T , and the DPGMM

will cluster the contextual features X(C) into M mixture components where M < T .

Additionally, consider the RVM classifier whose likelihood function is given by (3.7)

and (3.8). The RVM incorporates a sparseness-promoting prior on the weights (w)

that are used to classify the target features (X(T )) according to the labels (t).

Inference could be performed on the DPGMM and RVM jointly using a discrim-

inative model referred to here as the DPGMM-RVM. The likelihood function of the

DPGMM-RVM is given by

p
(
t,X(C)|X(T ),C,W,µ,Λ

)
=

N∏
n=1

T∏
m=1

[
σ
(
wT
mx(T )

n

)tn [
1− σ

(
wT
mx(T )

n

)]1−tn ND(C)

(
x(C)
n |µm,Λ−1m

)]cnm
,

(5.6)

where N denotes the number of observations, T denotes the truncation level, D(C)

denotes the dimensionality of X(C), and cnm is the binary indicator that denotes the

context of the nth observation.

The DPGMM-RVM model can be learned discriminatively by assuming conjugate

priors and using VB inference. The data-generating process for the fully-conjugate

DPGMM-RVM is as follows:

1. Draw α ∼ Gamma (τ10, τ20)
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2. For m = 1, 2, ..., T

(a) Draw vm|α ∼ Beta (1, α)

(b) Draw θ∗m|G0 ∼ ND(C)

(
µ∗m|ρ0, u

−1
0 Λ∗m

−1)W (Λ∗m|B0, ν0)

(c) Calculate mixture proportions πm (v) = vm
∏m−1

j=1 (1− vj)

(d) Draw βmd ∼ Gamma (a0, b0) , d = 1, 2, ..., D(T )

(e) Draw wm ∼ ND(T )

(
0, diag (βm)−1

)
3. For n = 1, 2, ..., N

(a) Draw indicator variable cn ∼ Multi (π)

(b) Draw data x
(C)
n |cnm = 1 ∼ ND(C)

(
x
(C)
n |θ∗m

)
(c) Draw label tn|cnm = 1 ∼ σ(wT

mx
(T )
n )tn

[
1− σ(wT

mx
(T )
n )
]1−tn

Inference on the DPGMM-RVM will seek to perform clustering theD(C)-dimensional

contextual features X(C) while training sparse linear classifiers in theD(T )-dimensional

target features X(T ). For all experiments, the following prior hyperparameter settings

were used: a0 = b0 = u0 = 1, τ10 = τ20 = 0.01, ν = D(C), B0 = D(C)ID(C) , and ρ0

was set equal to the sample mean of X(C). Variational inference was performed until

the NFE converged within 0.01%. All details regarding VB for the DPGMM-RVM,

including update equations and the NFE, are derived in Appendix E.

The structure of the DPGMM-RVM allows for mean-field updates of the DPGMM

and RVM parameters to be performed independently of one another. Only in the

update for the cluster responsibilities (the variational parameters governing the pos-
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terior on C), are both sets of parameters used:

log φnm ∝ log q(cnm = 1)

∝〈log p(T,X(C)|C,X(T ),−)〉+ log p(C)

∝〈log p
(
T|C,X(T )

)
〉+ 〈log p

(
X(C)|C

)
〉+ log p(Z)

∝ log σ (ξnm) +
1

2

(
[2tn − 1] 〈wT

m〉x(T )
n − ξnm

)
− λ (ξnm)

(
x(T )
n

T 〈wmwT
m〉x(T )

n − ξ2nm
)

+
1

2
〈log |Λm|〉 −

1

2
〈
(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)
〉

+ 〈log vm〉+
∑
l<m

〈log (1− vl)〉,

(5.7)

where λ and ξ are defined in the RVM derivation found in Appendix B, and 〈·〉

denotes variational expectation.

The first line of the final expression in (5.7) is the expectation of the RVM

log-likelihood given by (B.38), the second line is the expectation of the GMM log-

likelihood given by (C.8), and the third line is the stick-breaking prior. The prior

will regularize the updates for both the DPGMM and RVM parameters, and the

DPGMM and RVM will also regularize one another. Therefore, instead of learning a

DPGMM that fits X(C) well, or a set of RVMs that predict t well, the DPGMM-RVM

will seek a model that satisfies both criteria.

An alternative approach would be to perform clustering and classification in the

combined feature space X̃ =
[
X(C),X(T )

]
which has dimensionality D̃ = D(C)+D(T ).

The likelihood function of this model is similar to the DPGMM-RVM:

p
(
t, X̃|,−

)
=

N∏
n=1

M∏
m=1

[
σ
(
wT
mX̃n

)tn [
1− σ

(
wT
mX̃n

)]1−tn
ND̃

(
X̃n|µm,Λ−1h

)]cnm
,

(5.8)

The model given by (5.8) was originally presented in [109] as the quadratically-
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gated mixture of experts (QGME) for classification in problems with missing data.

Incorporating a stick-breaking prior on the latent variables C yields the infinite

quadratically-gated mixture of experts (IQGME) that was proposed in [94]. The

QGME and IQGME were both originally proposed for classifying data with missing

dimensions, so context-dependent learning is a novel application for this type of

model.

It was suggested in [94] that it may not be desirable to enforce sparseness in the

component classifiers if they are all jointly operating in the same feature space, since

sparse component classifiers will yield a decision function that is discontinuous in

the joint features X̃. Unlike the DPGMM-RVM, the QGME and IQGME therefore

utilize a common Normal-Gamma prior on the classifier weights given by

wm ∼ ND̃
(
ξ, diag (β)−1

)
, (5.9)

(ξ|β) ∼ ND̃
(
0, γ−10 diag (β)−1

)
, (5.10)

βp ∼ Gamma (a0, b0) , p = 1, 2, ..., D̃. (5.11)

The data-generating process for the IQGME is very similar to the DPGMM-RVM,

with the only differences being that clustering and classification are performed on the

common features X̃ and the prior given by (5.9)-(5.11) is imposed on the classifier

weights. The hyperparameter settings for the IQGME in all experiments were very

similar to the DPGMM-RVM; a0 = b0 = u0 = 1, τ10 = τ20 = 0.01, γ0 = 1, ν = D̃,

B0 = D̃ID̃, and ρ0 was set equal to the sample mean of X̃. VB inference was also

performed until the NFE converged within 0.01%.

Although the differences between the DPGMM-RVM and IQGME may appear to

be subtle, the novel accommodation of sparse linear models through the DPGMM-

RVM allows for markedly different performance. These differences will be analyzed

in the following section through a series of synthetic data examples.
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5.4 Synthetic Data Examples

In this section, the DPGMM-RVM and the IQGME are compared in three context-

dependent learning problems using synthetic data. The first problem considers the

case in which all features are informative; i.e. the classes are separable in the joint

context and target features. The second problem is similar to the first, but the con-

text features are made less informative by increasing the variance of each cluster.

The third problem considers the case in which most of the target features are ir-

relevant in each context. This may occur in GPR algorithm fusion if one or more

algorithms perform poorly in certain environments. In all examples, the DPGMM-

RVM and IQGME were initialized with a clustering truncation of T = 20. The

DPGMM-RVM and IQGME are compared based upon their context identification

performance, learned discriminant weights, and overall classification accuracy.

Case 1: All Features Informative

Figure 5.1 provides scatterplots of the synthetic target and contextual features. The

target features were drawn from Gaussian distributions conditioned on each class

and context:

p
(
x(T )|H0, c1

)
= N ([−3,−2], 2I) , p

(
x(T )|H1, c1

)
= N ([0, 0], 2I)

p
(
x(T )|H0, c2

)
= N ([−4,−1], 2I) , p

(
x(T )|H1, c2

)
= N ([−2, 0], 2I)

p
(
x(T )|H0, c3

)
= N ([0, 0], 2I) , p

(
x(T )|H1, c3

)
= N ([−3,−2], 2I)

p
(
x(T )|H0, c4

)
= N ([−2, 0], 2I) , p

(
x(T )|H1, c4

)
= N ([−4,−1], 2I)

In the aggregate target feature space, the classes appear to overlap completely as

shown in the left panel. The context features were drawn from four distinct Gaussian

distributions:

p
(
x(C)|c1

)
= N ([−2, 2], 2I)
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Figure 5.1: Scatterplot of target and context features for the first synthetic data ex-
ample to illustrate discriminative context-dependent learning. Left: two-dimensional
aggregate target feature space, with points colored by class; Center: two-dimensional
context feature space, with points colored by context; Right: target features, split
into individual contexts.

p
(
x(C)|c2

)
= N ([2, 2], 2I)

p
(
x(C)|c3

)
= N ([−2, 2], 0.5I)

p
(
x(C)|c4

)
= N ([2,−2], 0.5I)

The center panel illustrates the two-dimensional context feature space and the dis-

tinct clusters are clearly visible. Conditioning the target features on the true under-

lying contexts reveals four classification problems that are almost linearly separable,

as shown in the rightmost panels.

Figure 5.2 illustrates the clustering results obtained from the DPGMM-RVM in

the contextual feature space. The left panel shows a scatterplot of the contextual

feature space, with points colored by the MAP context assigned by the DPGMM-

RVM. The similarity matrix between the learned contexts and the true context labels

is shown in the right panel, illustrating that the four contexts that were learned

correspond very closely to the true contexts.

The clustering results obtained from the IQGME are summarized in Figure 5.3. A

total of 8 clusters were learned, and they appear to overlap in the contextual feature
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Figure 5.2: Results of context identification using the discriminative DPGMM-
RVM model for the first synthetic data example.. Left: scatterplot of context fea-
tures, with points colored by MAP context; Right: similarity matrix of true and
learned context assignments.

space. However, recall that the IQGME performs clustering on the combined con-

textual and target features. Although the cluster assignments may appear to overlap

heavily in the context feature space, they are distinct in the combined features.

The differences in clustering results for the DPGMM-RVM and IQGME are

better-explained by comparing the classifiers learned by each. Figure 5.4 illustrates

the classifiers corresponding to each of the contexts learned by the DPGMM-RVM.

Each panel shows a local target feature space in which points are colored by class,

and the linear decision models corresponding to each context are also shown. In

the case of the DPGMM-RVM, each context is representative of a unique binary

classification problem with approximately equal numbers of points from each class.

The classifiers learned by the IQGME are shown in Figure 5.5, and are markedly

different from those learned by the DPGMM-RVM. Note that although IQGME per-

forms classification in the joint context and target features, the illustrated classifica-
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Figure 5.3: Results of context identification using the IQGME model for the first
synthetic data example.. Left: scatterplot of context features, with points colored
by MAP context; Right: similarity matrix of true and learned context assignments.

tion lines correspond only to the weights on the target features. Although Contexts

1, 3, 5, and 8 illustrate linearly-separable binary classification problems, Contexts

2, 4, 5, and 7 consist of mostly points from the H0 class. The classifiers learned for

these contexts could be highly over-trained because they do not incorporate much

information about the H1 class.

The differences between the behavior of the DPGMM-RVM and IQGME can be

further highlighted through analysis of the discriminant weights, which are plotted

in Figure 5.6. The top panel illustrates the weights learned by the DPGMM-RVM

for each context, and the center panel illustrates the weights learned by the IQGME.

The bottom plot shows the weights obtained from an “oracle” that trains a linear

RVM on each of the context-specific classification problems.

The weights learned by the DPGMM-RVM agree nearly perfectly with the oracle

weights. Because the IQGME operates on the joint target and context features, it
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Figure 5.4: Component classifiers learned by the discriminative DPGMM-RVM
model for the first synthetic data example. Each panel illustrates a two-dimensional
scatterplot of the target features, corresponding to points from each learned context,
with the decision boundary learned for each context overlaid.

assigns weights to the two context features as well. The weights assigned to the target

features of are smaller magnitude than the weights assigned by the DPGMM-RVM

and the oracle, and are of similar magnitude to the weights assigned to the context

features. This result suggests that the IQGME also found the context features to be

informative of class.

ROC curves for the DPGMM-RVM, IQGME, and the oracle are plotted in Fig-

ure 5.7. Results were evaluated by training and testing on different sets of data drawn

from the same context and target feature distributions. The ROC for the DPGMM-

RVM is shown in blue, and IQGME is shown in green. Performance is compared

to generative context-dependent learning with the DPGMM-RVM (red), the oracle

(black solid), and a linear RVM operating on the target features alone (black dashed).
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Figure 5.5: Component classifiers learned by the IQGME model for the first syn-
thetic data example. Each panel illustrates a two-dimensional scatterplot of the
target features, corresponding to points from each learned context, with the decision
boundary learned for each context overlaid.

The performance of both the discriminative and generative DPGMM-RVM were sim-

ilar, with the generative approach having slightly better performance. The IQGME

did not perform as well as either DPGMM-RVM; it is likely that the IQGME was

overtrained since it learned classifiers for contexts consisting of only data from one

class.

Case 2: Less-Informative Context Features

In the second simulated data example, the context features were less informative since

the clusters overlapped more in the feature space. This was achieved by increasing

the variances of each dimension in each context. The distributions for Contexts 1
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Figure 5.6: Discriminant weights learned by the DPGMM-RVM, IQGME, and
the context oracle for the first synthetic data example, colored by context. Top:
DPGMM-RVM weights; Center: IQGME weights; Bottom: RVM weights based on
the context oracle.

and 2 had a covariance of 3I and Contexts 3 and 4 had a covariance of 2I. Figure 5.8

illustrates scatterplots of the synthetic target and contextual features for the second

synthetic data example.

Figure 5.9 illustrates the clustering results obtained from the DPGMM-RVM in

the contextual feature space, as well as the similarity matrix between the learned

contexts and the true context labels. In this case, the DPGMM-RVM learned more

contexts than before, yielding a total of 7. Most of the data from each of the four

true contexts are split between three or four learned contexts. This illustrates that

when less obvious clustering exists in the contextual features, the number of contexts
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Figure 5.7: ROC curves comparing discriminative context-dependent learning on
the first synthetic data example. Performance is compared between the DPGMM-
RVM (blue), IQGME (green), generative context-dependent learning with the
DPGMM-RVM (red), linear RVM learned on target features only (black dashed),
and the context oracle (black solid).

Figure 5.8: Scatterplot of target and context features for the second synthetic
data example. Left: two-dimensional aggregate target feature space, with points
colored by class; Center: two-dimensional context feature space, with points colored
by context; Right: target features, split into individual contexts. [21]
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Figure 5.9: Results of context identification using the discriminative DPGMM-
RVM model for the second synthetic data example. Left: scatterplot of context
features, with points colored by MAP context; Right: similarity matrix of true and
learned context assignments. [21]

learned by the DPGMM-RVM may increase.

The clustering results obtained from the IQGME are summarized by Figure 5.10.

A total of 11 clusters were learned, and like before, they appear to overlap in the

contextual feature space since clustering was performed on the combined contextual

and target features. Furthermore, the higher number of clusters suggests that more

locally-unique classification problems were learned from the IQGME than from the

DPGMM-RVM.

The component classifiers learned by the discriminative DPGMM-RVM are shown

in Figure 5.11. Although more contexts were learned in the case of less-informative

context features, the DPGMM-RVM still finds linearly-separable sub-problems for

each context. It is interesting to note that for most of the contexts, the learned

decision boundary is either purely horizontal or vertical. This suggests that in these

contexts, only one target feature is relevant.
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Figure 5.10: Results of context identification using the IQGME model for the
second synthetic data example.. Left: scatterplot of context features, with points
colored by MAP context; Right: similarity matrix of true and learned context as-
signments.

The classifiers learned by the IQGME are shown in Figure 5.12. Recall that

IQGME performs classification in the joint context and target feature space; for

visualization purposes, the classification lines shown in each panel are determined

by the weights on the target features. Like the first example, most of the contexts

learned by the IQGME consist of data from mostly one class. This is true for

Contexts 1, 4, 5, 9, and 10. Based on these results, the IQGME would be expected

to perform similarly as before.

The discriminant weights for the DPGMM-RVM, IQGME, and oracle are shown

in Figure 5.13. Similar to the previous case, the DPGMM-RVM and oracle have

weights of similar magnitude. However, since more than four contexts were learned,

they do not match nearly as well as in the first example. However, the IQGME

shows similar performance as before, assigning small weight to each of the target

and context features.
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Figure 5.11: Component classifiers learned by the discriminative DPGMM-RVM
model for the second synthetic data example. Each panel illustrates a two-
dimensional scatterplot of the target features, corresponding to points from each
learned context, with the decision boundary learned for each context overlaid. [21]

ROC curves for the second synthetic data example are shown in Figure 5.14.

In this case, both discriminative approaches outperformed the generative approach.

This is because the discriminative models learned contexts where classification could

be performed effectively, while the generative model only sought to cluster the con-

text features. Another interesting observation is that both discriminative models

performed similarly to one another, suggesting that the IQGME was not as over-

trained as the larger number of contexts may have suggested.

Case 3: Irrelevant Target Features

The third simulated data example addresses performance when some target features

are irrelevant. This has implications for buried threat detection, in which the rele-

118



Figure 5.12: Component classifiers learned by the IQGME model for the second
synthetic data example. Each panel illustrates a two-dimensional scatterplot of the
target features, corresponding to points from each learned context, with the decision
boundary learned for each context overlaid.

vance of detection algorithms may vary with respect to environment. For this case

of simulated data, the target features were 10-dimensional, only two of which were

relevant in each context. The two relevant features were drawn from the same dis-

tributions as in the previous example, and the irrelevant features were drawn from

a Gaussian distribution with zero mean and variance of 2. The first two target fea-

tures were relevant in Context 1, the last two were relevant in Context 2, features

1 and 10 were relevant in Context 3, and features 5 and 6 were relevant in Context

4. The contextual features were drawn from the same two-dimensional Gaussian
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Figure 5.13: Discriminant weights learned by the DPGMM-RVM, IQGME, and
the context oracle for the second synthetic data example, colored by context. Top:
DPGMM-RVM weights; Center: IQGME weights; Bottom: RVM weights based on
the context oracle. [21]

distributions used in the second example.

Figure 5.15 illustrates the clustering results obtained from DPGMM-RVM in

the contextual feature space. The DPGMM-RVM performed similarly compared to

the previous example, learning six contexts. Figure 5.16 illustrates the clustering

results obtained from the IQGME. Compared to the previous example, the IQGME

learned more contexts. A total of 17 contexts were learned, and like the previous

examples, they overlapped heavily in the contextual feature space since clustering

was performed on the joint context and target features.

More differences between the performance of the DPGMM-RVM and IQGME in
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Figure 5.14: ROC curves comparing discriminative context-dependent learning
on the second synthetic data example. Performance is compared between the
DPGMM-RVM (blue), IQGME (green), generative context-dependent learning with
the DPGMM-RVM (red), linear RVM learned on target features only (black dashed),
and the context oracle (black solid). [21]

the presence of irrelevant features can be seen by analyzing the learned discriminant

weights, which are plotted in Figure 5.17. The weights for the DPGMM-RVM are

very similar to those learned by the oracle, illustrating that most of the weights

for each context are zero, and the relevant features in each context receive nonzero

weight. Meanwhile, the IQGME classifiers are not sparse, and most of the target

and context features receive a relatively small weight.

The ROC curves comparing the performance of the DPGMM-RVM and IQGME

in the presence of irrelevant features are provided in Figure 5.18. In this case, the

DPGMM-RVM appears to be more robust than the IQGME since it was able to cor-

rectly model the relevance of the target features with respect to context. These re-

sults suggest that the DPGMM-RVM may be a superior model for context-dependent

learning if different target features are expected to be irrelevant under certain envi-

ronmental conditions.
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Figure 5.15: Results of context identification using the discriminative DPGMM-
RVM model for the third synthetic data example. Left: scatterplot of context fea-
tures, with points colored by MAP context; Right: similarity matrix of true and
learned context assignments.

Figure 5.16: Results of context identification using the IQGME model for the third
synthetic data example. Left: scatterplot of context features, with points colored by
MAP context; Right: similarity matrix of true and learned context assignments.
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Figure 5.17: Discriminant weights learned by the DPGMM-RVM, IQGME, and
the context oracle for the third synthetic data example, colored by context. Top:
DPGMM-RVM weights; Center: IQGME weights; Bottom: RVM weights based on
the context oracle.

In summary, the DPGMM-RVM and the IQGME are two similar approaches to

discriminative context learning. However, their behavior on synthetic data highlights

important differences as to when each is appropriate to use. The IQGME performs

clustering and classification in a common feature space, and therefore is not amenable

to sparse classifiers. In contrast, the DPGMM-RVM performs clustering on the

contextual features, while also performing classification in the features designed for

discriminating targets.

The synthetic data examples showed that in the case where all features are equally

informative, and the context features form distinct clusters, generative context learn-

ing may be the best approach. However, if the contextual features do not cluster well,

discriminative context learning can improve overall classification performance. The

final example considered the case in which some target features were non-informative,
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Figure 5.18: ROC curves comparing discriminative context-dependent learning on
the third synthetic data example. Performance is compared between the DPGMM-
RVM (blue), IQGME (green), linear RVM learned on target features only (red solid),
linear RVM learned on both sets of features together (red dashed), and the context
oracle (black).

illustrating that the DPGMM-RVM can effectively learn the context-dependent rel-

evance of target features.

5.5 Experimental Results with GPR Data

The discriminative DPGMM-RVM and IQGME were used for context-dependent

algorithm fusion and evaluated on the GPR data set used in Chapters 3 and 4. The

target features consisted of the prescreener, EHD, HMM, and SPSCF confidence

values. As was done for the generative DPGMM in Chapter 4, the context features

originally proposed in Chapter 2 were projected to 3-D via PCA. The DPGMM-

RVM and IQGME discriminative models were trained using variational inference

with the same hyperparameter settings from the synthetic examples. In addition,

the truncation level for initializing the DPGMM-RVM was set to T = 30, and the

truncation level for IQGME was set to T = 20. Due to the computational expense
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of training these models, both were trained on a subset consisting of 6,864 alarms

that included all target alarms and a 3:1 clutter-to-target ratio.

5.5.1 Context Identification Performance

The results of context identification using the DPGMM-RVM are summarized by

Figure 5.19, which illustrates a scatterplot of the contextual features colored by

soil label and by MAP contexts learned from the DPGMM-RVM. Additionally, Fig-

ure 5.20 shows the similarity matrix between the soil labels and DPGMM-RVM

contexts. Results illustrate that the DPGMM-RVM learned a total of 21 contexts.

This result appears very similar to what was obtained from the generative DPGMM

in Chapter 4, which 19 contexts as shown in Figures 4.5 and 4.6. Similarities between

generative and discriminative context learning include that the largest contexts con-

tain mostly dirt observations, and that contexts composed of mostly asphalt and

concrete data are distinct from those composed of mostly dirt and gravel. Another

similarity is that gravel data held a majority in only a few contexts (Contexts 4 and

13), while holding a large minority of the population of many other contexts.

The IQGME behaved differently on the GPR features than it did in the synthetic

data example. The IQGME identified fewer contexts than the DPGMM-RVM, yield-

ing 13 contexts total. The scatterplots comparing the learned IQGME contexts to

the known soil labels are shown in Figure 5.21, and the similarity matrix is shown

in Figure 5.22. The scatterplot shows significant overlap of the context assignments,

as it did in the synthetic examples. The vast majority of the data fall under Con-

texts 1 and 2, suggesting that the “typical” classification problem lies in these large

contexts.

The similarity matrix shown in Figure 5.23 compares the context identification

performance both the DPGMM-RVM and the IQGME. Because both techniques

identified a large number of contexts, it was difficult to visually compare the context
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Figure 5.19: Scatterplot comparing results of context learning using the discrimi-
native DPGMM-RVM on the GPR contextual features to the known soil labels. Left:
Scatter plot of 3-D PCA projection of contextual features, with points colored by
qualitative soil label. Right: Same scatter plot, but with points colored by MAP
mixture component. [21]

Figure 5.20: Similarity matrix comparing DPGMM-RVM clustering results to the
known soil labels.

126



Figure 5.21: Scatterplot comparing results of context learning using IQGME on
the GPR contextual features to the known soil labels. Left: Scatter plot of 3-D PCA
projection of contextual features, with points colored by qualitative soil label. Right:
Same scatter plot, but with points colored by MAP mixture component.

Figure 5.22: Similarity matrix comparing IQGME clustering results to the known
soil labels.
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Figure 5.23: Similarity matrix comparing IQGME context identification to
DPGMM-RVM context identification. The horizontal axis represents the DPGMM-
RVM contexts, and the vertical axis represents the IQGME contexts. The AMI of
the two clusterings [110] is shown at top. [21]

assignments from the scatterplots in Figures 5.19 and 5.21. Instead, the adjusted

mutual information (AMI) [110] was used to compare the results of context iden-

tification. The AMI can be used to compare two clusterings, each having different

numbers of clusters, while correcting for the effect of chance agreement. The range

of AMI is between zero and one; an AMI of one would be obtained for two identical

clusterings, and an AMI of zero would be obtained for two clusterings with only

chance similarity. The AMI between the contexts identified by the discriminative

DPGMM-RVM and IQGME was 0.3002. Although there appears to be strong over-

lap between IQGME Contexts 1 and 2 and DPGMM-RVM Contexts 8, 12, 16, and

18, which contain the majority of observations and mostly correspond to the dirt

soil type, the low AMI metric suggests that little information is shared between the

clusterings. However, based on results from the synthetic data examples, the low

degree of similarity between the DPGMM-RVM and IQGME contexts was expected.
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5.5.2 Context-Dependent Fusion Results

The discriminant weights learned for the DPGMM-RVM and IQGME are shown

in Figure 5.24. The DPGMM-RVM weights are shown in the top panel, and the

IQGME weights are shown at the bottom. The first four dimensions are the target

features, and in the case of IQGME, the last three are the context features. For the

DPGMM-RVM, the weights on the feature values (not the bias) are mostly either

positive or zero. The one exception to this is the prescreener weight in Context 8.

Therefore, the DPGMM-RVM weights could be interpreted as each algorithm being

either relied upon or ignored in each context, and only rarely discounted.

However, the IQGME weights for the target features appear somewhat evenly

distributed around zero; some are positive, and others are negative. This suggests

that the local classification problems discovered by IQGME are substantially different

than those found by the DPGMM-RVM, and the negative weights will cause fusion to

discount certain algorithms’ confidences for some contexts. Therefore, fusion would

tend to make a decision opposite of what the negatively-weighted algorithms may

indicate in those contexts.

5.5.3 Detection Performance

The discriminative context-dependent fusion techniques were evaluated using the

same cross-validation folds that were used to compute the ROC curves presented in

Chapters 3 and 4. Both discriminative learning techniques, the DPGMM-RVM and

IQGME, were evaluated and compared to the generative DPGMM-RVM presented

in Chapter 4 as well as conventional fusion with a linear RVM.

Figure 5.25 illustrates the ROC curves obtained for each of the fusion approaches

that were evaluated, as well as the prescreener, EHD, SPSCF and HMM algorithms.

The global RVM curve, shown by the black solid line, is plotted along with a shaded

region indicating the 90% confidence region. The ROC curve for the generative
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Figure 5.24: Discriminant weights learned by the DPGMM-RVM and IQGME
for algorithm fusion on the GPR data set. Top: DPGMM-RVM weights; Bottom:
IQGME weights.

DPGMM-RVM, originally shown as the red line in Figure 4.15, is plotted for ref-

erence. The discriminative DPGMM-RVM is shown by the green line, and the dis-

criminative IQGME by the blue line. Results show that all three context-dependent

fusion techniques yield significantly better performance than the single RVM. The

discriminative context-dependent fusion techniques both show a lower FAR than the

generative technique at low PD. The three ROC curves cross around PD=0.65. From

0.65 < PD < 0.85, the generative context-dependent approach has the best perfor-

mance. At higher PD, the performance of generative context-dependent fusion and
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Figure 5.25: ROC curves for discriminative context-dependent fusion using
the IQGME (blue) and DPGMM-RVM (green) compared to generative context-
dependent fusion (red), non-context-dependent RVM fusion (black dashed), and the
individual fused algorithms (dotted). The ROC consists of PD versus FAR, measured
in false alarms per square meter, as a function of decision threshold. [21]

the discriminative IQGME are similar, while the discriminative DPGMM-RVM is

not significantly better than the single RVM.

Of the three synthetic data examples, the results presented in Figure 5.25 appear

to be most similar to the first case. Although it was expected that discriminative

context-dependent fusion would yield the best performance, neither approach out-

performed the generative context-dependent fusion technique presented in Chapter 4.

However, it is interesting to see that both discriminative approaches performed sim-
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ilarly despite incorporating contextual information in different ways. Furthermore,

the similarity in performance between both discriminative approaches suggests that

the target features are relevant across all contexts. Therefore, enforcing sparseness in

the DPGMM-RVM discriminant weights did not improve performance. The superior

performance of the generative approach suggests that the context features already

cluster with respect to relevant contextual factors, and discriminative context learn-

ing may not be necessary.

5.6 Conclusion

In this chapter, two potential methods for discriminative context learning were pre-

sented. The first approach, referred to as the discriminative DPGMM-RVM, was

based upon the generative techniques presented in the previous chapter but was

learned based on the joint likelihood of the contextual features and class labels. The

second approach, the IQGME, is similar in that the gating network is based on the

DPGMM. However, the local experts are not sparse, and classification and clustering

are performed on the joint target and context features.

Several examples using synthetic data were used to illustrate the differences in

behavior between the two discriminative context learning approaches. The first ex-

ample considered two-dimensional context and target features, in which all were

informative. Comparison of the DPGMM-RVM and IQGME showed similarities in

classification performance, although the contexts that were learned were substan-

tially different. The discriminant weights learned for the IQGME were smaller in

magnitude than those learned for the DPGMM-RVM, since the IQGME also in-

corporated context features. Furthermore, the IQGME appeared over-trained since

it learned contexts consisting of only one class of data. Therefore, the DPGMM-

RVM led to better performance, although generative context-dependent learning

performed slightly better. The second example was similar to the first, with the only
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difference being that the context features were less informative. In this case, both dis-

criminative context-dependent classifiers performed similarly and yielded substantial

performance improvements over generative context-dependent learning.

The third synthetic data example considered the case in which some target fea-

tures were irrelevant, depending on the context. The DPGMM-RVM accurately

identified the features that were relevant in each context. The IQGME yielded a

model that was much less sparse, in terms of the number of learned contexts, than

the DPGMM-RVM. In this example, the DPGMM-RVM achieved performance gains

over the IQGME due to its ability to learn which features were relevant in which

context.

For experiments with GPR data, it was expected that discriminative context-

dependent learning would yield results similar to the second and third examples.

However, experimental results appear to be similar to the first synthetic example.

The similarity in performance of both discriminative techniques suggest that all of

the target features may be relevant across contexts. Furthermore, the fact that

generative context-dependent learning yielded better performance suggests that the

proposed features are very informative of the underlying contextual factors, and that

incorporating more information through discriminative context learning may not be

necessary.

Additional sources of contextual information should still be considered for im-

proving performance. One potential source is the spatial distribution of the context

features. The context learning techniques presented up to this point considered

individual prescreener alarms as statistically independent observations. However, a

wealth of contextual information may be available in the large stretches of target-free

data collected between prescreener alarms. By regularly sampling the background

to extract contextual features, spatially-distributed contextual factors may be dis-

covered. This information can be valuable for inferring the underlying context well
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before a prescreener alarm is recorded. The following chapter investigates two tech-

niques for achieving this goal through nonparametric spatial context modeling.
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6

Nonparametric Spatial Context Models

In military route clearance applications, a vehicular GPR system such as the NI-

ITEK HMDS may lead a convoy over many kilometers through varying terrain while

searching for buried explosive threats. In Chapters 3-5, several context learning

techniques were proposed for exploiting information regarding terrain differences to

improve the detection performance achieved by algorithm fusion. These techniques

utilized contextual information extracted near recorded prescreener alarms, and all

alarms were treated as independent observations. In practice, it may be more advan-

tageous to regularly extract contextual features from the background, and utilize the

spatial dependency of observations for better inference of the underlying context.

This chapter proposes two methods for nonparametric spatial context modeling.

While the previously-discussed context models operated on an alarm-by-alarm basis,

the models proposed in this chapter are used to infer context as a function of space.

This is achieved by extracting contextual features at regular downtrack intervals and

performing inference on each sample. The first context model that will be considered

is the DPGMM, which was originally presented for generative alarm-based context

learning in Chapter 4. The second model to be considered is the stick-breaking
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hidden Markov model (SBHMM), which is a nonparametric extension of the HMM

originally proposed by Paisley and Carin [69]. Like the DPGMM, the SBHMM

employs a stick-breaking prior to facilitate learning of the model’s order. However,

unlike the DPGMM which assumes all samples are independent, the SBHMM context

model allows for spatial dependency between samples.

6.1 Spatial Context Sampling

The context modeling approaches proposed in this chapter utilize contextual features

extracted from the background at regular intervals over a given area. The feature

extraction process is referred to as context sampling. There are several reasons for

using context sampling as opposed to extracting features from prescreener alarms.

The primary reason is that in route clearance patrols, the vast majority of GPR data

collected in the field will be free of buried threats. In current processing strategies,

the large stretches of background data are generally ignored after prescreening [41].

Although this background data may be target-free, it could potentially be rich in

contextual information. Another reason to motivate context sampling is that certain

contextual factors may be spatially-distributed. For example, consider a desert gulch,

a local region of low elevation where moisture may accumulate in the event of a flash

flood. It would be expected that the soil in a recently washed-out area may contain

more moisture than surrounding areas at higher elevations.

Consider the example shown in Figure 6.1. The top panel illustrates raw GPR

data collected on a concrete test lane, and the anomalies occurring around time sam-

ple 200 correspond to landmine signatures. In the late-time portion of the B-scan, a

faint subsurface layer emerges around downtrack sample 1000 and becomes stronger

around downtrack sample 2800. A second subsurface layer appears around down-

track sample 4300. These distinct regions characterized by different subsurface layer

responses could possibly correspond to unique, spatial context regions as illustrated
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Figure 6.1: Example of GPR data collected on a concrete lane and apparent spatial
context regions. Top: raw GPR data, Bottom: raw GPR data with apparent spatial
contexts indicated by different shaded regions. Downtrack position is represented by
the horizontal axis in both panels.

by the bottom panel.

In this work, context sampling was performed by extracting the contextual fea-

tures proposed in Chapter 2 from the background at regular 10 cm intervals. The

sequence of background features is denoted by X(C) = [x
(C)
1 ,x

(C)
2 , ...,x

(C)
N ], where

N is the length of the sequence. Although features were extracted from this data

off-line, it is understood that real-time implementation will be necessary in fielded

applications. Therefore, the sampling interval may need to be increased to facilitate

real-time processing. Furthermore, context features were only extracted from the

center channel (channel 24) of the GPR array. Although more contextual informa-

tion could potentially be exploited by sampling the other channels, incorporating

features from the other channels did not improve performance. In a similar vein
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to previously-discussed context modeling techniques, the features were projected to

3-D via PCA. Since PCA implies an underlying Gaussian distribution, it facilitated

training spatial context models based on Gaussian distributions. Furthermore, three

principal components were used because the alarm-based DPGMM context model

also performed best using the same number of components.

Figure 6.2 illustrates a zoomed-in portion of the GPR data shown in Figure 6.1

to illustrate the context sampling interval and how the background features are

illustrative of contextual transitions. The top panel illustrates the portion of the

lane where the early-time subsurface layer appears around downtrack sample 4275.

The dashed lines represent the downtrack samples from where context features were

extracted from the background. In the bottom plot, the contextual shift is reflected

by a change in the values of the second principal component of the context features.

It appears that there is a latency of about 30 samples from where the shift occurs

and where the feature values change. This is likely due to the fact that features are

extracted causally, using the 100 A-scans preceding each sample point.

After the feature sequence is extracted from the background, it is processed by a

statistical context model. The context model yields posterior context probabilities,

p(cnm = 1|x(C)
n ), for each sample (x

(C)
n ) for n = 1, 2..., N . If a prescreener alarm falls

between two samples, it is associated with the context posterior of the earlier sample.

Context posteriors for several distinct test lanes are illustrated in the experimental

results presented in Section 6.4.1.

In this chapter, two spatial context models are proposed. Both models were

learned using the generative approach. The first is an extension of the DPGMM

originally presented in Chapter 4. The second is based upon the SBHMM, origi-

nally developed by Paisley and Carin [69]. While the DPGMM approach to context

modeling treats all samples as independent observations, the SBHMM exploits de-

pendencies between neighboring samples. The two context models are described in
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Figure 6.2: GPR data from Figure 6.1, zoomed in to illustrate background sampling
near a contextual shift. Top: raw GPR data, with feature extraction locations noted
by dashed lines, Bottom: 3-D PCA of background contextual features. Downtrack
position is represented by the horizontal axis in both panels.

greater detail in the following sections.

6.2 DPGMM Spatial Context Model

The DPGMM was proposed in Chapter 4 for generative context learning, and was

also utilized in Chapter 5 as the gating network for discriminative context learning.

In both cases, the DPGMM was used to model the distribution of context features

corresponding to prescreener alarms. In the case of spatial context modeling, the

DPGMM was trained on the three-dimensional PCA projection of the contextual

feature sequence (X(C)) extracted from regular background samples.

Refer to Section 4.3 for a description of the DPGMM generative model and likeli-

hood functions. Details on VB inference of the model parameters that was developed
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for this application can be found in Appendix C. The DPGMM was learned using

the same hyperparameter settings as in Chapter 4: u0 = 1, τ10 = τ20 = 1, ν0 = D(C),

B0 = D(C)ID(C) , and ρ0 was set equal to the sample mean of X(C). Note that since

PCA is being used on the features, D(C) = 3. Additionally, the truncation level T

was set to 30. The only major difference in implementation was the cluster prun-

ing criterion, which was set at 5% to prevent too many small contexts from being

learned.

Recall the DPGMM likelihood function given by (4.27) and its data-generating

process; by modeling context as the latent variable governing draws from a mixture

of Gaussians, observations are treated as statistically independent. In terms of the

Chinese restaurant process, which was described in Section 4.2, each customer selects

a table based only on the number of people seated at each table and not necessarily

what the previous customer’s choice was.

However, it was mentioned earlier that certain contextual factors may be spatially-

distributed. The spatial dependency between feature samples may be a useful source

of contextual information. The following section proposes using a nonparametric

variant of the HMM to model context as a spatially-varying state underlying the

background features X(C).

6.3 SBHMM Spatial Context Model

The HMM is a popular choice for modeling time series that are dependent on an un-

derlying state variable that is not directly observed, but can be inferred from data.

While most notably used in speech recognition applications [111], HMMs have also

been explored for modeling polyphonic music recordings [112, 113], speaker diariza-

tion [114], handwriting recognition [115, 116], acoustic sensing [117], and landmine

detection [42,48].

The HMM follows the structure of a Markov chain, in which a data sequence
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X = [x1,x2, ...,xN ] is assumed to be in one of M states at a given index n, i.e.,

sn ∈ {S1, S2, ..., SM}, where M is the order of the model. The HMM incorporates

a degree of statistical dependency between observations in the sequence through

the Markov property, which states that the state of the current observation is only

dependent on the state of the previous observation:

p(sn+1 = Sm|sn = Sj, sn−1, .., s1) = p(sn+1 = Sm|sn = Sj). (6.1)

The “hidden” aspect of an HMM is that the underlying state is treated as an

unknown latent variable. However, the state sequence can be inferred from X given

the model parameters, {π,A,Θ}. The M × 1 vector, π, consists of the initial state

probabilities, which are given by

πm = p(s1 = Sm), m = 1, 2, ...,M, (6.2)

and satisfy the following properties:

0 ≤ πm ≤ 1 (6.3)

M∑
m=1

πm = 1 (6.4)

The M ×M matrix, A, consists of the state transition probabilities which are given

by

amj = p(sn+1 = Sm|sn = Sj), m = 1, 2, ...,M, j = 1, 2, ...,M, (6.5)

are assumed to be constant with respect to time, and satisfy the following properties:

0 ≤ amj ≤ 1 (6.6)

M∑
j=1

amj = 1 (6.7)
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Finally, θi are the parameters for the emission densities, p(xn|sn = Sm). There is

no restriction on the form of the emission densities, the only requirement being that

they are valid PDFs.

The conventional method for learning the parameters of an HMM is via the Baum-

Welch algorithm, which performs maximum-likelihood estimation for a model with

fixed order (i.e., known number of states). Given a trained HMM, the Viterbi algo-

rithm can then be used for calculating the most probable state sequence for a given

observation sequence. Details regarding the Baum-Welch and Viterbi algorithms can

be found in [111], while implementation details are discussed in [118].

Earlier work suggested modeling context in GPR data as a spatially-dependent

state variable using an HMM of fixed order [119]. While a spatially-dependent

HMM context model showed potential for improvement over alarm-based context-

dependent fusion, performance varied significantly with respect to the number of

states (contexts) being considered. Like GMMs, HMMs are susceptible to over- or

under-training if the model order is specified incorrectly. A poorly-trained context

model can then lead to poor performance in context-dependent fusion. Fortunately,

the DP offers a potential solution to this problem as it did in the case of the GMM

context model.

Since the elements of π and the rows of A are constrained to sum to one, they can

be treated as parameters of a multinomial distribution from which the underlying

state is drawn at any given point in the sequence, X. If an HMM is assumed to be

infinite-order, the DP can be used as a sparseness-promoting prior on the number of

states since it is conjugate to the multinomial distributions parameterized by π and

A. Several methods for incorporating DP priors into HMM inference rely on Markov

chain Monte Carlo (MCMC) sampling to approximate the posterior probabilities

[114, 120]. To maintain consistency with the VB techniques used in the previous

chapters, this work utilizes the VB approach based on the stick-breaking construction
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as proposed in [69]. This model is referred to as the stick-breaking HMM (SBHMM).

The SBHMM imposes a stick-breaking prior on the rows of A as well as on π

to facilitate learning an effective number of states given the training sequences. The

priors are given by:

amj = vAmj

j−1∏
k=1

(1− vAmk) (6.8)

πm = vπm

m−1∏
k=1

(1− vπk ) (6.9)

where

vAmj ∼ Beta(1, αAmj) (6.10)

vπm ∼ Beta(1, απm) (6.11)

Recall the discussion regarding stick-breaking priors from Section 4.2. If the

distribution G is drawn from a stick-breaking process, model parameters drawn from

G will take on distinct values θ∗j , j = 1, 2, ...,∞, and G therefore translates to

the discrete density given by (4.26). In the case of the HMM, the latent variable

governing the mixture proportions corresponds to the underlying state. Therefore,

imposing the stick-breaking prior on the state transition probabilities assumes that

G is state-dependent and each state shares the same θ∗j , such that,

Gn(m) =

{∑∞
j=1 πjδθ∗j , if n = 1∑∞
j=1 amjδθ∗j , if n > 1

∀m = 1, 2, ....,∞ (6.12)

VB inference can be performed on the SBHMM by assuming a truncation level

T on the number of states and conjugate priors on all model parameters, including

the parameters of the emission densities. In this work, the emission densities were

treated as multivariate Gaussian with unknown mean and covariance, and therefore

have Normal-Wishart priors. Therefore, the SBHMM used as a context model in
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this work is very similar to the DPGMM proposed in the previous section, with

the Markov property being the only major difference between the two. The data-

generating process for the SBHMM used in this work is as follows:

1. For m = 1, 2, ..., T

(a) Draw απm ∼ Gamma (c0, d0)

(b) Draw vπm|απm ∼ Beta (1, απm)

(c) Calculate initial state probabilities πm = vπm
∏m−1

k=1 (1− vπk )

(d) For j = 1, 2, ..., T

i. Draw αAmj ∼ Gamma (c0, d0)

ii. Draw vAmj|αAmj ∼ Beta
(
1, αAmj

)
iii. Calculate state transition probabilities amj = vAmj

∏j−1
k=1

(
1− vAmk

)
(e) Draw θ∗m|G0 ∼ N

(
µ∗m|ρ0, u

−1
0 Λ∗m

−1)W (Λ∗m|B0, ν0)

2. For n = 1, 2, ..., N

(a) Draw indicator variable sn ∼

{
Multinomial (π) , if n = 1

Multinomial
(
asn−1

)
if n > 1

(b) Draw data x
(C)
n |snm = 1 ∼ N

(
x
(C)
n |θ∗m

)
, m = 1, 2, ...,M

The SBHMM emission densities were initialized into T = 30 clusters using k-

means. The following hyperparameter settings were used for all experiments in this

chapter, as recommended in [69]: u0 = 1, c0 = 10−6, d0 = 0.1, ν0 = D(C), B0 =

D(C)ID(C) , and ρ0 was set equal to the sample mean of X(C).

The following synthetic data example illustrates the performance of the SBHMM

in modeling synthetic data. Figure 6.3 illustrates the parameters of an four-state

HMM from which 100 sequences of length 25 were drawn. The emission densities are
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Figure 6.3: True parameters for the SBHMM synthetic data example. The top
panel illustrates the emission densities, the bottom-left panel illustrates the initial
state probabilities, and the bottom-right panel illustrates the state transition prob-
ability matrix.

four Gaussian distributions with means of -12, -4, 4, and 12 with unit variance. The

initial state probabilities are uniform, i.e. πm = 0.25, for m = 1, 2, 3, 4. Finally, the

state transition matrix shows no probability of remaining in any given state - each

state has equal probability of transitioning to one of two other states.

The SBHMM was learned using VB inference with a NFE convergence thresh-

old of 10−4. After convergence, states with too few samples were eliminated. The

expected number of state transitions (denoted as Ã = {ãij}) was calculated from

the variational posteriors on A to yield the top panel of Figure 6.4. To calculate

the expected overall state occupancy, the columns of Ã were summed to yield the

values shown in the bottom panel of Figure 6.4. All states with an occupancy of

less than 1% were pruned from the model, and the remaining initial and transition

probabilities were renormalized to sum to one.

The model parameters which remained after pruning are shown in Figure 6.5.

In this example, all of the true parameters were approximated very closely. By
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Figure 6.4: Illustration of state pruning from converged SBHMM. The top panel
illustrates the expected number of state transitions as calculated from the variational
posteriors. The bottom panel illustrates the expected state occupancy, with the 1%
occupancy threshold shown.

comparing these results to the true HMM parameters shown in Figure 6.3, it is

clear that the learned State 1 corresponds to the true State 2, the learned State 2

corresponds to the true State 1, the learned State 3 corresponds to the true State 4,

and the learned State 4 corresponds to the true State 3.

For use as a GPR context model, an SBHMM was trained on sequences of PCA-

projected background features (D(C) = 3) using VB inference with the same hyper-

parameter settings as in the synthetic data example. After learning converged to

a solution and extraneous states were pruned with a 5% occupancy criterion, the

causal state posteriors at each downtrack position are given by the forward variable,

α:

αn(m) = p
(
x
(C)
1 ,x

(C)
2 , ...,x(C)

n , snm = 1|π,A,Θ
)
, (6.13)
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Figure 6.5: Learned parameters for the SBHMM synthetic data example. The top
panel illustrates the learned emission densities, the bottom-left panel illustrates the
learned initial state probabilities, and the bottom-right panel illustrates the learned
state transition probability matrix.

where α is computed recursively via the following:

α1(m) = πmp
(
x
(C)
1 |snm = 1

)
(6.14)

αn+1(m) =

[
M∑
m=1

αn(m)anm

]
p
(
x
(C)
n+1|snm = 1

)
. (6.15)

The forward variable allows for the context of a given downtrack position to be

computed using only the current and prior samples. Although the Markov property

assumes that the state of a given sample is only dependent on the state of the

previous sample, the recursive update allows for spatial dependency to be a factor

in determining the context posterior of any location in the background sequence.

When a prescreener alarm is encountered on the lane at location n, it is assigned the

context posterior corresponding to the background sample x
(C)
n . If the alarm falls

between two background samples, the earlier sample’s context posterior is used.

As in the previous approaches, the context posteriors were used in training an
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ensemble of RVMs for context-dependent algorithm fusion on the prescreener, EHD,

HMM, and SPSCF algorithm confidences. The RVMs were trained on each of the

alarms’ target features x
(T )
n using the mixture-of-RVMs approach described in Ap-

pendix B. For a test alarm at location n, each of the RVMs will yield a within-context

target posterior, p(H1|x(T )
n , snm = 1). The forward variable, αn(m), for that location

is then calculated using the learned HMM parameters for m = 1, 2, ...,M . Finally, a

posterior confidence for the alarm can then be calculated by

p(H1|x(T )
n ,x(C)

n ) =
M∑
m=1

p(H1|x(T )
n , snm = 1)p

(
x
(C)
1 ,x

(C)
2 , ...,x(C)

n , snm = 1|π,A,Θ
)

=
M∑
m=1

p(H1|x(T )
n , snm = 1)αn(m) (6.16)

6.4 Experimental Results

An experiment was performed using a subset of the GPR data set that was used in

previous chapters. A smaller dataset was used because the full data was too large

for efficiently training the spatial context models with fine downtrack sampling. The

data under consideration in this experiment was collected at an Eastern US test

site under dry conditions in March 2009. Four test lanes (dirt, gravel, asphalt, and

concrete) were present at the site. The target population consisted of 10 types of

AT landmines plus 155mm artillery shells. Empty holes were present and scored as

clutter. Overall, a total of 764 targets and 152 clutter objects were encountered over

a total collection area was 12,383 m2. The distribution of prescreener alarms with

respect to the four lanes is summarized in Table 6.1.

Evaluation of alarm classification was performed using the same object-based

cross-validation technique used in the previous experiments. However, the spatial

DPGMM and SBHMM were trained outside of crossvalidation since they utilized
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Table 6.1: Alarm Distribution by Soil Type and Ground Truth (Smaller Data Set)

Soil Clutter (%) Targets (%) Total (%)

Dirt 387 (24.2%) 207 (25.8%) 594 (24.7%)

Gravel 350 (21.8%) 205 (25.6%) 555 (23.1%)

Asphalt 245 (15.3%) 212 (26.4%) 457 (19.0%)

Concrete 620 (38.7%) 178 (22.2%) 798 (33.2%)

ALL 1,602 (100%) 802 (100%) 2,404 (100%)

background feature sequences instead of prescreener alarms. The following subsec-

tions provide analysis of context-dependent fusion, including the performance of the

context models, the context-specific RVMs, and overall discrimination performance.

6.4.1 Context Modeling Performance

Several unique realizations of the DPGMM and SBHMM context models were ob-

tained through random k-means initializations. For purposes of comparison, we

consider the case in which both models yielded seven contexts. Figure 6.6 compares

the means of the context distributions that were learned from the spatial DPGMM

and SBHMM models. Other than DPGMM Context 2, the means of the context

distributions are very similar in both cases. In addition, the learned covariance ma-

trices of the DPGMM context distributions are shown in Figure 6.7, the learned

covariance matrices of the SBHMM context distributions are shown in Figure 6.8.

The covariance matrices appear to be less similar than the means, but the overall

scale and structure of each context’s covariance matrix appears similar between the

two models. Comparing the Gaussian densities learned for both models therefore

shows that the spatial dependency leveraged by the SBHMM has more of an impact

on the learned emission covariances than the means.

The initial state probabilities learned for the SBHMM are plotted in Figure 6.9,

and the state transition probability matrix is shown in Figure 6.10. The initial state
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Figure 6.6: Learned context means for the spatial DPGMM and SBHMM context
models on GPR data. Left: means learned from the spatial DPGMM, Right: means
learned from the SBHMM. Feature dimension is represented by the horizontal axis.

Figure 6.7: Covariance matrices of clusters learned by the spatial DPGMM con-
text model. Each panel represents the covariance matrix of the Student-t mixture
components obtained by integrating over the DPGMM parameters.

probabilities appear relatively uniform, with States 1, 3, and 5 having an initial

probability close to 0.2 and States 2, 4, 6, and 7 having initial probabilities close to

0.1. The state transition matrix has a moderate diagonal, but the probabilities of

remaining in one state are not as high as what would be expected. This result was

somewhat surprising, since the test lanes over which data were artificially constructed

and short in length, so they were expected to be relatively homogeneous.

Figures 6.11-6.14 illustrates examples of the raw data, background contextual
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Figure 6.8: Covariance matrices of clusters learned by the SBHMM context model.
Each panel represents the covariance matrix of the Gaussian emission density corre-
sponding to each context.

features (projected to 3-D PCA), and the state posteriors for both the SBHMM and

DPGMM context model for single passes down each of the four lanes. Figure 6.11

corresponds to the dirt lane. In this case, the SBHMM assigned high posterior

probability of being in Context 7 for most of the lane, while the DPGMM assigned

higher probability to either Context 1 or 2, and lower probability to Context 5 and

6. The gravel lane is shown in Figure 6.12, where the DPGMM and SBHMM context

Figure 6.9: Initial state probabilities learned by the SBHMM context model. State
(context) is represented by the horizontal axis.
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Figure 6.10: State transition probabilities learned by the SBHMM context model.
State (context) is represented by the horizontal and vertical axes.

models appeared to behave somewhat similarly.

Figure 6.13 shows the results of spatial context modeling for the asphalt lane.

The SBHMM assigned high posterior probability of being in Context 1, 4, or 7 at

any given position. Meanwhile, the DPGMM context posteriors appear to be a more

“smoothed-over” version of the SBHMM context posterior, assigning moderate prob-

ability to multiple contexts. Comparing the two models here shows a great similarity

in where the contextual changes occurred in the lane. However, the SBHMM yielded

sharp state transitions while the DPGMM favored gradual transitions.

Finally, the context posteriors for the concrete lane that was originally shown in

Figures 6.1 and 6.2 are shown in Figure 6.14. A similar effect to what was seen on

the asphalt lane is shown here, in that the SBHMM assigns posterior probabilities

close to one or zero at each downtrack location, while the DPGMM yields moderate

posteriors at transition points. Furthermore, it also appears that the SBHMM is

utilizing more contexts on this lane. This can be seen in the first 2000 downtrack

samples, where the SBHMM utilizes four contexts and the DPGMM utilizes three,
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Figure 6.11: Example GPR data from the dirt lane and associated state posteriors
from SBHMM and DPGMM context models. Top: GPR B-scan; Center: PCA
of background context features; Bottom: SBHMM and DPGMM state posteriors.
Downtrack position is represented by the horizontal axes.
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Figure 6.12: Example GPR data from the gravel lane and associated state poste-
riors from SBHMM and DPGMM context models. Top: GPR B-scan; Center: PCA
of background context features; Bottom: SBHMM and DPGMM state posteriors.
Downtrack position is represented by the horizontal axes.
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Figure 6.13: Example GPR data from the asphalt lane and associated state poste-
riors from SBHMM and DPGMM context models. Top: GPR B-scan; Center: PCA
of background context features; Bottom: SBHMM and DPGMM state posteriors.
Downtrack position is represented by the horizontal axes.
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as well as in the remaining samples where the SBHMM utilizes three contexts and

the DPGMM utilizes two.

It should be noted that the presence of landmine and clutter signatures in the

GPR could have an effect on spatial context modeling, since their downtrack positions

are likely to be sampled for extracting contextual features. The presence of anomalies

corresponding to targets or clutter could possibly be a reason why the SBHMM tends

to yield many state transitions in sections where the DPGMM suggests a single

context. Because an anomaly does not appear similar to the previous observation

in the feature sequence, the SBHMM considers the anomaly to be evidence of a

state transition while the DPGMM considers it to be more of a statistical outlier.

In previous work [119,121], the background data was broken into segments between

target positions, and the context model was trained on these target-free sequences.

During this work, it was very difficult to extract target-free sections of the lanes

that were long enough to effectively model the underlying contextual factors. It

would also be impossible to train a context model in this manner using field data,

since extracting target-free sections requires ground truth for the alarms that were

encountered. Therefore, this approach was not used here although future work should

investigate how to reliably train a spatially-dependent context model in the presence

of known subsurface anomalies.

6.4.2 Context-Dependent Fusion Results

The spatial DPGMM and SBHMM context models assigned a posterior context

probability to locations of prescreener alarms. As in previous chapters, these con-

text posteriors were used in training context-specific RVMs for linearly-fusing the

confidences of the prescreener, EHD, SPSCF, and HMM algorithms. Figures 6.16

and 6.15 illustrate the discriminant weights assigned by the RVMs to the algorithms

in each of the 7 contexts identified by the DPGMM and SBHMM.
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Figure 6.14: Example GPR data from the concrete lane and associated state poste-
riors from SBHMM and DPGMM context models. Top: GPR B-scan; Center: PCA
of background context features; Bottom: SBHMM and DPGMM state posteriors.
Downtrack position is represented by the horizontal axes.

157



A visual comparison of the fusion weights for each context modeling technique

reveals a number of similarities. For both the DPGMM and SBHMM context model,

the RVM assigns positive weight to the prescreener in three contexts, negative weight

in two contexts, and zero weight in two contexts. The DPGMM contexts in which

the prescreener receives negative weight are Contexts 5 and 7, and the SBHMM

contexts are Contexts 1 and 2. The means and covariances for these contexts shown in

Figures 6.6-6.8 suggest that DPGMM Context 5 and SBHMM Context 1 have similar

densities, as do DPGMM Context 7 and SBHMM Context 2. The context posteriors

shown in Figures 6.13 and 6.14 suggest that these contexts represent pavement -

DPGMM Context 5 and SBHMM Context 1 correspond to portions of the asphalt

lane, and DPGMM Context 7 and SBHMM Context 2 correspond to portions of

the concrete lane. The negative fusion weight assigned to the prescreener for these

contexts implies that its confidence should be discounted, perhaps because it flags too

many false alarms due to anomalous responses from the pavement/soil subsurface

layer.

Furthermore, the EHD, SPSCF, and HMM algorithms receive fusion weights

that are quite similar between the two context modeling approaches. For DPGMM

contexts, the EHD algorithm is relevant in six contexts while for SBHMM context it

is relevant in five. The SPSCF algorithm is relevant in five contexts for both modeling

approaches. Finally, the HMM receives nonzero weight in five DPGMM contexts and

four SBHMM contexts. Although it appears that algorithms are generally more often

relevant in DPGMM contexts than in SBHMM contexts, the values of the weights

for each algorithm are similar between the two context models.

6.4.3 Detection Performance

Context-dependent algorithm fusion using the SBHMM and spatial DPGMM con-

text models were evaluated via ten-fold object-based cross-validation, as the fusion
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Figure 6.15: RVM discriminant weights learned for algorithm fusion in each spatial
DPGMM context. Each stem represents a particular dimension of the target feature
space, the vertical axis represents the weight value, and the individual contexts are
indicated by line color.

Figure 6.16: RVM discriminant weights learned for algorithm fusion in each
SBHMM context. Each stem represents a particular dimension of the target fea-
ture space, the vertical axis represents the weight value, and the individual contexts
are indicated by line color.
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techniques presented in previous chapters were. In this experiment, the consistency

of the SBHMM and DPGMM context models’ performance were compared by using

multiple random initializations of the VB learning algorithm. Five different real-

izations of the DPGMM and SBHMM context models were considered. For sake of

comparison, five realizations of the alarm-based DPGMM context model (proposed

earlier in Chapter 4) were also considered. Only one realization of the global RVM

was necessary, since it did not require random initialization.

The ROC curves for context-dependent fusion, using the spatial DPGMM (green)

and SBHMM (blue) context models as well as the alarm-based DPGMM (red), are

plotted in Figure 6.17. ROC curves for five realizations of each model are shown,

and their average FARs at benchmark PDs are shown in the legend. Performance is

compared to the global RVM, which incorporates no contextual information, whose

ROC is shown by the dashed black line and shaded by a 90% confidence region.

Performance is also compared to the individual fused algorithms, whose ROC curves

are shown by dotted lines.

As in previous GPR experiments, results illustrate that all three methods for

context-dependent fusion achieved significantly better detection performance than

global RVM fusion. Furthermore, both spatial context modeling techniques showed

better fusion performance than the alarm-based DPGMM, with the most significant

reductions of FAR occurring between PDs of 0 and 0.85. At PD ≥ 0.90, all ap-

proaches operate at similar FARs although some realizations of the SBHMM result

in better performance.

An interesting result is the differences in consistency between the three context-

dependent fusion methods. Although the alarm-based DPGMM did not achieve

the same level of performance as the spatial context models, the ROC curves for

context-dependent fusion using the alarm-based DPGMM illustrate very consistent

performance. On the other hand, the ROC curves obtained by using spatial context
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Figure 6.17: ROC curves for context-dependent fusion, using SBHMM (blue)
and DPGMM (green) spatial context models, compared to alarm-based context-
dependent fusion (red), global RVM fusion (black dashed), and the individual fused
algorithms (dotted).The ROC consists of PD versus FAR, measured in false alarms
per square meter, as a function of decision threshold.

models appear to be less consistent, with the SBHMM’s performance fluctuating

more than the DPGMM’s. This could be due to several factors, such as poor choice of

hyperparameters, not running VB for long enough, or insufficient context pruning to

obtain a more consistent solution. Regardless of the reason, that the spatial DPGMM

is a simpler model that appears to offer similar but more consistent performance, and

would be a better choice for modeling context in this data.

161



6.5 Conclusion

In military route clearance applications for GPR, large stretches of target-free back-

ground data may be recorded on an excursion that could last for many kilometers.

Although subsurface anomalies may not be present, background data collected for

large periods could be a valuable source of contextual information. Therefore, the

concept of context modeling was extended in this chapter, in which two methods

were proposed for modeling context with respect to downtrack position.

The proposed approaches utilized features that were extracted through back-

ground sampling at regular intervals down the test lanes. The resulting feature se-

quences were then modeled using either a DPGMM or SBHMM to obtain posterior

context probabilities at each downtrack location. While the DPGMM treated each

sample as statistically independent, the SBHMM assumed a degree of dependency

between neighboring samples. The incorporation of dependency via the SBHMM

was motivated by the fact that many environmental factors, such as soil moisture,

may be correlated spatially.

Experimental results illustrated that both spatial context modeling approaches

were able to provide an intuitive description of how contextual factors vary over the

course of a given area. Comparisons between the model parameters learned for the

DPGMM and SBHMM illustrated that the learned contexts had similar probability

density functions. Furthermore, comparisons of the context posteriors showed that

both models generally agreed on where contextual transitions occurred in each lane.

However, one major difference was that the DPGMM favored gradual transitions

while the SBHMM implied that sharp transitions took place.

Evaluation of context-dependent fusion using the two spatial context models was

performed on a subset of the data used in previous chapters. Performance was

compared to context-dependent fusion using the alarm-based DPGMM that was
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proposed in Chapter 4. The ROC curves showed that spatial context modeling

provided additional performance benefits over alarm-based context modeling. How-

ever, the performance improvements obtained through the SBHMM were shown to

be less consistent than those obtained from the spatial DPGMM. Therefore, it was

concluded that the spatial DPGMM would be a better choice for spatial context

modeling, since it is a simpler model that was more consistent and yielded similar

detection performance.
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7

Applications to Hyperspectral Sensing

In this chapter, the context-dependent learning framework originally developed for

buried threat detection with GPR is applied to an alternative sensing modality, hy-

perspectral imagery (HSI). Airborne hyperspectral sensing is a particularly attrac-

tive option for detecting buried explosive threats, since it allows for greater standoff

distance than GPR and can be used to survey wide areas quickly. Furthermore, dis-

turbed earth yields a distinctive signature in HSI that can potentially be indicative

of buried threats such as landmines and IEDs.

The following sections provide background information on HSI as well as the

contextual factors affecting detection of buried threats. Two techniques for extracting

contextual features are considered. The first technique utilizes a PCA projection

of the background spectra, and is useful in characterizing different times of day.

The second technique is based on spectral unmixing, which involves finding the

spectra of the constituent materials present in the scene and how the abundances of

those materials vary between observations. Finally, context-dependent band selection

was used to classify prescreener alarms recorded over a wide area. Three context-

dependent approaches are compared - supervised context learning, nonparametric
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generative context learning with the DPGMM, and nonparametric discriminative

context learning with the DPGMM-RVM. As was done previously for experiments

with GPR data, performance is compared to a single RVM and several algorithms

from the past literature.

7.1 Hyperspectral Imagery

7.1.1 Background

Hyperspectral sensors collect measurements of spectral radiance from many con-

tiguous spectral bands. HSI is used in a variety of remote sensing applications, but

system specifications vary widely with application area. For example, one of the most

popular sensors in the research community is the NASA Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) sensor, which has been collecting images in 224

bands between 400 and 2500 nm for geological, agricultural, and urban mapping

applications [122]. Meanwhile, the Airborne Hyperspectral Imager (AHI) developed

by the University of Hawaii for subsurface and littoral sensing, is constrained to 70

bands in the long-wave infrared (LWIR) spectrum of wavelengths ranging from 8-12

µm [123].

Anomaly detection in HSI is typically performed by estimating background statis-

tics and using a metric based on the likelihood ratio. An example of this approach

is the popular RX detector [124], which uses adaptive whitening to estimate the

local covariance of the background near pixels of interest. Examples of targets and

false alarms detected by RX on a hyperspectral data set collected over a minefield

at an arid site in the Western US are shown in Figures 7.1 and 7.2. Each figure

displays a series of several 15x15 image chips, centered around detected anomalies.

For visualization purposes, the chips were averaged over the 70 spectral bands.

The surface and volume scattering of recently-disturbed earth at the target loca-

tion often yields a peak intensity called the reststrahlen effect [125]. In Figure 7.1,
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Figure 7.1: Example HSI image chips corresponding to antitank landmines
recorded by the RX detector over a minefield located at an arid Western US test
site.

the reststrahlen effect is evidenced by red peak at the center of many of the image

chips. Meanwhile, most false alarms shown in Figure 7.2 do not exhibit the same

type of signature. Because the reststrahlen signatures are confined to a small local

area, the RX detector provides a good method for detecting these types of anomalies.

However, the substantial false alarm rate has relegated its use to prescreening in past

experiments with the AHI sensor [65,126].

7.1.2 Environmental Effects on HSI Sensing

Because HSI measures spectral radiance over a wide spectral range that can include

visible and/or infrared (IR) portions of the spectrum, several environmental factors

can potentially affect the data. Occlusions such as clouds or heavy smog may impact

the line-of-sight visibility of objects from the sensor’s position, which may impact
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Figure 7.2: Example HSI image chips corresponding to false alarms recorded by
the RX detector over a minefield located at an arid Western US test site.

measurements taken in the visible part of the spectrum [127]. For HSI collected in

the IR spectrum, ambient solar radiance and temperature are important contextual

factors since they affect the thermal emissions of the ground and objects that lie on

the surface [123,126]. Figure 7.3 illustrates example spectra of three landmine targets

(i.e. buried/surface AT landmines and/or disturbed earth) and false alarms (i.e.

bare soil and/or vegetation) collected at three times of day: morning, afternoon, and

night. Note the difference in magnitude between spectra collected at each time. The

afternoon spectra, collected after the ground has absorbed much solar radiation, are

of the highest magnitude. Meanwhile, the night spectra have the lowest magnitude.

Also note that the overall shape of target and false alarm spectra are quite similar

and only subtle differences may distinguish targets of interest from non-threatening

anomalies. Furthermore, the shape of target and false alarm spectra vary with respect
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Figure 7.3: Example target and false alarm spectra from HSI collected in morning
(solid lines), afternoon (dotted lines), and night (dashed lines). Target spectra are
provided in the top panel, and false alarm spectra in the bottom panel.

to time of day. For example, the morning and afternoon spectra for both targets and

false alarms exhibit a local peak around the fifth spectral band. Meanwhile, this peak

does not appear in the night signatures. These differences between spectra suggest

that time of day, and the lighting and temperature conditions associated with it,

are contextual factors that should potentially be considered in target classification

processing.

7.1.3 Buried Threat Detection with HSI in Changing Conditions

Anomaly detection in HSI requires proper modeling of the background in order for

the spectra of interest to properly appear as anomalous. The most basic approach

is to model the background as Gaussian-distributed with parameters estimated by

maximum-likelihood statistics. This is the method employed by the RX detector,
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which may use a sliding window to adaptively estimate the background mean and

covariance, and declares outliers as anomalies [124]. A similar approach to mitigating

local variations in background is by applying a multimodal statistical model, such as

a mixture of Gaussians [128]. Another approach is to apply a transformation to the

data that yields a feature space invariant to background changes, such by adaptive

whitening and dewhitening [129]. These past techniques were shown to be effective in

cases where the background is spatially non-stationary. However, parametric models

for high-dimensional data are difficult to learn robustly, and incorporate little to

no prior knowledge regarding sensor phenomenology. Context-dependent learning is

a potential method for exploiting knowledge of sensor phenomenology to improve

detection performance across varying environments. In the HSI literature, local

context-based processing was originally proposed for smoothing out segmentation

maps [62,63]. In this chapter, contextual information is utilized to improve anomaly

classification in HSI using the same learning framework that was originally developed

for a similar problem in GPR.

7.2 HSI Data Set

The HSI data used in this work was collected with the AHI sensor as part of a

Wide Area Airborne Minefield Detection (WAAMD) platform, and has been used in

several past evaluations of context-dependent landmine detection algorithms [65,126,

130–132]. A total of 8 images (corresponding to individual flyovers) were collected

over a minefield in the Southwestern US at times labeled “morning,” “afternoon,”

and “night”. The minefield contained both surface-laid and buried metal anti-tank

targets, as well as many empty holes which were also counted as targets. The RX

detector was run on the data, and a total of 4,591 image chips, each consisting of a

15×15×70 data block, were extracted around the detected anomalies. A total of 755

chips were labeled as targets (H1), and 3,836 chips were labeled as clutter (H0).
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Figure 7.4: Illustration of the context and target feature extraction regions for a
typical HSI image chip. Note that the image shown was averaged over all 70 spectral
bands for visualization purposes.

The following section proposes methods for extracting contextual and target fea-

tures from the HSI chips. Two contextual feature extraction approaches are con-

sidered, as was previously done in [132]. The first is based on the raw background

spectra, which is useful for characterizing different times of day based on magnitude

differences. The second is based on spectral unmixing, and is used to characterize

the constituent spectra that make up the background.

7.3 Feature Extraction from HSI Data

Figure 7.4 illustrates the regions of a sample HSI chip where contextual and target

features were extracted. As in alarm-based processing of GPR data, contextual

features were extracted from the background data proximate to the detected anomaly.

Meanwhile, target features were extracted from the 5×5 central region by averaging

all of the pixels within that region to yield a 70-D target feature vector.

The first context learning technique is based on exploiting the magnitude differ-
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ences that are associated with times of day. However, it is also important to consider

the case if all samples were collected at the same time of day, which eliminates the

possibility of temporal contextual effects. Therefore, the second technique is based

on spectral unmixing to learn the constituent spectra of the pure materials present

in different parts of the scene. The two contextual feature extraction techniques are

described in the following sections.

7.3.1 Context Learning Based on Background Spectra

Recall Figure 7.3, which illustrated how the magnitude of target and false alarm

spectra varies substantially with respect to time of day. These observations suggest

that temporal context can be inferred directly from the raw HSI data. Therefore,

the first context learning technique that was considered utilized the background

region of the image chips (the outer square in Figure 7.4) to characterize whether

the observation was collected in the morning, afternoon, or night.

Contextual feature extraction was performed by averaging the pixels in the back-

ground region, projecting the 70-D mean to 3-D with PCA, and then normalizing to

zero-mean and unit-variance. Figure 7.5 illustrates a scatterplot of the principal com-

ponents of the averaged background data, colored by time of day. The background

data forms three distinct clusters for morning, afternoon, and night.

After extracting the 3-D background-based context features, they were provided

as input to a statistical context model. In this chapter, three context models are

compared. The basic supervised Gaussian hypothesis test, which as described in

Section 3.1, serves as a baseline. In addition, two nonparametric context models

were considered - the generative DPGMM, which was originally presented in Sec-

tion 4.3, and the discriminative DPGMM-RVM, which was described in Section 5.3.

In learning all three context models, any hyperparameter settings were set to the

same values used in previous GPR experiments.
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Figure 7.5: Scatterplot of the 3-D PCA projection of the averaged background
pixels of each image chip, colored by time of day.

7.3.2 Context Learning Based on Spectral Unmixing

Another scenario to consider is if data was collected under similar lighting and tem-

perature conditions. Although the data set used in this work was collected at different

times of day, temporal effects were mitigated to simulate data collected at the same

time of day. This was accomplished by subtracting the means from the background

and target regions of all image chips recorded in a single flyover.

In the scenario where all observations are viewed under similar lighting and tem-

perature, potential contextual factors could be obtained through the spectral com-

position of the background. This problem has been pursued extensively in the HSI

literature as spectral unmixing, i.e. the expression of image pixels as a finite sum

of known constituent spectra. These constituent spectra are known as endmembers,

and are representative of the pure elements present in the scene. The following sub-

sections discusses the linear mixing model as well as the technique used for extracting

contextual features.
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7.3.3 Linear Spectral Mixing Model

In Chapter 2, a simple phenomenological model was proposed for motivating contex-

tual features from GPR data. This was the transmission line model, and although

it is based on very broad physical assumptions it proved effective in characterizing

quantitative properties of the soil environment. In HSI, a simple phenomenological

model that is often used is the linear mixing model, which is based on the assumption

that each of N pixels is a linear combination of M endmember spectra representing

the pure elements present in the scene:

xn =
M∑
m=1

anmEm + εn (7.1)

where

M∑
m=1

anm = 1 (7.2)

anm ≥ 0 (7.3)

In (7.1), xn is the nth D-dimensional pixel in the image (n = 1, 2, ..., N), Em is the

mth endmember spectrum (m = 1, 2, ...,M) and the mth column of the endmember

matrix (E), anm is the abundance of endmember m in pixel n, and εn is a random

error term. The abundances are constrained to be greater than zero and sum to one.

If there is no error, all of the pixels lie within an M -simplex in a D-dimensional space,

where the endmembers correspond to the vertices of the simplex. The abundances

form a simplex as well, but in M -dimensional space. However, since they must sum to

one, the abundances contain redundant information. By projecting the abundances

onto the simplex, they can serve as a feature space of dimensionality M − 1 from

which a context model can be learned.
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7.3.4 Endmember Extraction

A common problem in HSI is that the endmembers for a particular scene are of-

ten unknown, so they must be learned from the image data. Several endmember

extraction algorithms have been proposed for unmixing HSI into its constituent

spectra [133–136]. Endmember extraction algorithms often exploit the geometric

interpretation of the linear mixing model. One of the earliest endmember extraction

techniques is N-FINDR [133], which initializes the endmembers with random pixels

and iteratively grows the simplex to include all pixels. However, a weakness of N-

FINDR and similar techniques is that they inherently assume that at least one pure

pixel is present in the image.

More recent approaches treat the endmember extraction task as an optimization

problem [134–136]. For example, the iterative constrained endmembers (ICE) al-

gorithm [134] optimizes a trade-off between minimizing the residual sum-of-squares

(RSS) between the pixels and the linear mixing model, and minimizing the sum of

squared distances (SSD) between the endmembers. RSS is calculated by

RSS =
N∑
n=1

(
xn −

M∑
m=1

anmEm

)T (
xn −

M∑
m=1

anmEm

)
, (7.4)

and SSD is calculated by

SSD =
M−1∑
m=1

M∑
k=m+1

(Em − Ek)
T (Em − Ek) = M(M − 1)V ,

where V is the sum of the variances (over each band) of the endmembers. The

objective function minimized by ICE in learning the endmembers is given by

RSSreg = (1− µ)
RSS

N
+ µV , (7.5)

where µ is a parameter set to the trade-off between RSS and SSD (which is pro-

portional to V ). ICE uses an iterative process to minimize RSSreg with respect to
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the endmembers and abundances. Given a single row of the endmember matrix (E),

denoted by ed for d = 1, 2..., D, RSS is minimized (subject to the constraints on

the abundances) using quadratic programming. This step yields an estimate of the

abundances A = {anm}. Then, given A, the endmembers that minimize RSSreg are

given by

ed =
[
ATA +

Nµ

(M − 1)(1− µ)

(
IM −

11T

M

)]−1
ATxd, (7.6)

where xd is an N × 1 vector consisting of the dth dimension of of all pixels.

To illustrate the performance of ICE in extracting endmembers from hyperspec-

tral data, a synthetic example is shown in Figure 7.6. Three-dimensional data was

generated by 1000 draws from a Dirichlet(1,1,1) distribution. Since the data forms a

simplex, ICE should find endmembers close to the simplex vertices. However, min-

imizing RSS alone (µ = 0) would yield a simplex large enough to enclose all the

pixels. Furthermore, minimizing SSD (µ = 1) would yield another degenerate case

in which all endmembers would converge to the mean of the data. Instead, the µ

parameter must be set to balance the desired trade-off between the two. Figure 7.6

shows the result of ICE on the synthetic data using three different values of µ. Note

that as µ increases, the learned endmembers move towards the mean of the pixel

data.

Another illustration of the performance of ICE is shown in Figure 7.7. The top

plot illustrates spectra of three materials from the US Geological Survey spectral

library [137]. A total of 1000 random mixtures of these materials were simulated by

drawing abundances from a Dirichlet(1,1,1) distribution. ICE was run on the mixed

data withM = 3 and µ = .001. The 3 endmembers extracted by ICE are shown in the

bottom plot, and match the constituent spectra above very closely. Endmember 1 is

approximately equal to the spectrum for rabbitbrush, Endmember 2 is approximately

equal to the spectrum of juniper, and Endmember 3 is approximately equal to the
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Figure 7.6: Results of endmember extraction using ICE on 3-dimensional toy data
with µ = 0.1 (black), µ = 0.01 (green), and µ = 0.00001 (red). The pixel data are
represented by the blue points.

spectrum of grass.

In this work, ICE was used as a technique for contextual feature extraction for

HSI. To eliminate temporal differences in spectral magnitude, the means of the back-

ground and target pixels for each time of day were subtracted from the images. Then,

for each anomaly detected by RX, the pixels in the background region of each 15×15

chip were averaged. ICE was run with M = 4 and µ = .001 on the aggregation of

the averaged background spectra for all detected anomalies. A larger M could po-

tentially be used, but experiments with larger values of M resulted in endmembers

that were redundant or had negligible abundance. It should also be noted that a

sparseness-promoting modification of ICE (SPICE) has been proposed for learning

the number of endmembers [135]. However, the number of endmembers was fixed for

the sake of comparison with the 3-D PCA-based features discussed in Section 7.3.1.

The learned endmember spectra are shown in Figure 7.8, and they are clearly distinct
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Figure 7.7: Results of endmember extraction using ICE on a synthetic mixture
of endmember spectra from the USGS spectral library. The top plot illustrates the
reflectance of three materials measured over many wavelengths by spectroradiome-
ter. The bottom plot illustrates the endmembers extracted from N = 1000 random
mixtures of the above spectra by ICE.

from one another.

After extracting the four endmembers and calculating their abundances for each

chip, the abundances were projected onto the simplex to yield 3-D contextual fea-

tures which were then normalized to zero-mean and unit variance. It is expected that

different contexts should be characterized by differences in endmember abundances.

Therefore, the contextual features should be amenable to clustering by a statistical

mixture model. Like the background-based features proposed in the previous sec-

tion, context learning was performed using the supervised, generative DPGMM, and

discriminative DPGMM-RVM models.

7.4 Experimental Results

Experimental results are presented in this section, illustrating the results of context

learning, context-dependent band selection, and overall detection performance on
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Figure 7.8: Endmember spectra extracted from background regions of AHI image
chips using ICE with µ = 0.001.

the HSI data described in Section 7.2. In each of the following subsections, results

are compared for context learning using background-based and endmember-based

features. By considering both sets of features separately, the relevant differences

between exploiting temporal and environmental contexts can be seen. Detection

performance is also compared to a single linear RVM, which incorporates no contex-

tual information, as well as to methods that attempt to mitigate contextual effects via

whitening/dewhitening [129] and a mixture of Gaussians [128], and the RX detector

which was used as a prescreener [124].

7.4.1 Context Learning Results

As discussed in Section 7.3.1, the background spectra should be indicative of differ-

ent times of day. Scatterplots of the PCA-projected background spectra are shown

in Figure 7.9, with points colored according to their maximum a posteriori (MAP)

temporal label (top-left), DPGMM-learned context (top-right), and discriminatively-

learned context (bottom). The top-left plot shows that supervised context learning
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Figure 7.9: Scatterplots illustrating results of supervised (top-left), generative
DPGMM (top-right), and discriminative (bottom) context learning from the PCA-
projected background spectra. Points are colored according to their MAP context.

successfully classifies points according to the time-of-day labels originally shown in

Figure 7.5. The top-right plot illustrates how the DPGMM splits the three tempo-

ral categories into sub-contexts that may be reflective of more subtle differences in

spectrum magnitude. Finally, the bottom plot illustrates that discriminative context

learning partitions the feature space in a different manner than generative context

learning.

The similarity of the three context learning methods is compared in Table 7.1,
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Table 7.1: AMI of HSI Context Models Trained on PCA of Background Spectra

Supervised DPGMM Discriminative

Supervised 1 0.7594 0.6947

DPGMM 0.7594 1 0.8669

Discriminative 0.6947 0.8669 1

which compares the pairwise adjusted mutual information (AMI) [110] of the MAP

context assignments. Recall that an AMI of one corresponds to identical cluster

assignments, and an AMI of zero corresponds to a mutual information expected by

chance. The DPGMM and discriminative context models are most similar, having

an AMI of 0.8669. The supervised and discriminative models are most different,

with an AMI of 0.6947. However, the tabulated AMI values are all relatively high,

suggesting a great degree of similarity between the three models despite learning

different numbers of contexts.

It was suggested in Section 7.3.2 that if time-of-day effects are corrected for

(by subtracting the mean from the background and target regions), spectral un-

mixing may characterize the variations in endmember abundance throughout the

scene. Endmember-based context learning was performed on the projection of the

abundances onto the 3-simplex (a tetrahedron). Unlike the averaged background

spectra, the endmember abundances were not expected to characterize time of day.

Instead, they were expected to characterize local populations of observations where

the endmember spectra mix differently in the background.

Figure 7.10 illustrates scatterplots of the endmember features, with points colored

according to their MAP time of day (top-left), DPGMM-learned context (top-right),

and discriminatively-learned context (bottom). The greatest difference between these

scatterplots and those in Figure 7.9 is that the features do not cluster according to

time of day. This comes as no surprise, since the HSI chips were mean-subtracted

to eliminate the magnitude differences caused by temporal changes in lighting and
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Figure 7.10: Scatterplots illustrating results of supervised (top-left), generative
DPGMM (top-right), and discriminative (bottom) context learning from the end-
member abundances learned by ICE. Points are colored according to their MAP
context.

temperature. However, the top-right and bottom plots show that the nonparamet-

ric models allow for contexts to be learned in an unsupervised manner. Generative

context learning with the DPGMM found 11 contexts, and discriminative context

learning with the DPGMM-RVM found 17 contexts. In both cases, more contexts

were learned from the endmember features than from the averaged background spec-

tra, suggesting that the endmember features may be indicative of more localized

contextual factors.
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Table 7.2: AMI of HSI Context Models Trained on Endmember Abundances

Supervised DPGMM Discriminative

Supervised 1 0.3402 0.3190

DPGMM 0.3402 1 0.6214

Discriminative 0.3190 0.6214 1

The AMI of the contexts learned from the endmember abundances are summa-

rized in Table 7.2. The DPGMM and discriminative context models were the most

mutually-informative, with an AMI of 0.6214. However, they were less mutually in-

formative as they were when trained on the background spectra, suggesting that the

models behave more differently when trained on endmember abundances. The two

nonparametric context models had an AMI with the supervised model of about 0.3,

which is much lower than when the models were trained on the background spectra.

Low AMI between the supervised and nonparametric models was expected because

temporal effects were eliminated.

7.4.2 Context-Dependent Band Selection Results

As was done previously for context-dependent fusion in GPR, the linear RVM was

used as a context-specific classifier for discriminating targets from false alarms in HSI

data. Target features were extracted from each image chip by averaging the pixels

in the center region. Separate RVMs were learned for classifying the averaged target

spectra in each context. Because the priors used in learning promote sparseness in

the weights, the RVMs will apply nonzero weight to only a subset of the 70 spectral

bands. Therefore, training an ensemble of RVMs based on the learned contexts will

also perform band selection within each context.

The RVM weights corresponding to each context learned from the background

spectra are shown in Figure 7.11. The top plot illustrates the weights for each of the

three times of day. Most of the bands receiving nonzero weight are towards the left,
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which roughly correspond to the “bump” in the spectra shown in Figure 7.3. In each

context, a unique subset of the spectral bands receive nonzero discriminant weight,

suggesting that the relevance of certain bands for classifying targets from clutter vary

with time of day. The center plot illustrates the discriminant weights assigned for

each of the generatively-learned DPGMM contexts, which are less sparse than those

assigned for the temporally-labeled contexts. The bottom plot illustrates the weights

obtained for each of the discriminatively-learned contexts, and they appear similar

to those assigned for the temporally-labeled contexts. Note that the weights for the

discriminatively-learned contexts appear to be more sparse than those learned for

the generatively-learned contexts.

Figure 7.12 illustrates the RVM weights corresponding to each context learned

from the endmember abundances. The top plot shows the weights for each of the

three temporally-labeled contexts. Note that the weights in this panel are different

than those in the top panel of Figure 7.11. This difference suggests that subtracting

the mean from the target features, which eliminates temporal effects, also changes

the relevance of certain spectral bands for classification purposes. The center plot

illustrates the RVM weights assigned to each of the generatively-learned DPGMM

contexts, and they appear to be more sparse than those shown in the center panel

of Figure 7.11. These weights also appear similar to those in the bottom panel,

which correspond to the discriminatively-learned contexts. Note that in the case

of endmember-based context learning, a greater number of contexts were learned.

The RVMs learned for each context tend to be very sparse, and some may only

assign nonzero weight to two or three spectral bands. These results suggest that

the reststrahlen characteristics of disturbed earth may manifest itself in only a few

spectral bands that depend on the local soil context.
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Figure 7.11: RVM discriminant weights corresponding to supervised (top),
DPGMM (center), and discriminative (bottom) contexts learned from background
spectra. The horizontal axes represent spectral band, and the vertical axes represent
the value of the discriminant weights. Context is indicated by color.
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Figure 7.12: RVM discriminant weights corresponding to supervised (top),
DPGMM (center), and discriminative (bottom) contexts learned from endmember
abundances. The horizontal axes represent spectral band, and the vertical axes rep-
resent the value of the discriminant weights. Context is indicated by color.
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7.4.3 Detection Performance

The discrimination performance of context-dependent learning was evaluated via 10-

folds cross-validation over the image chips. The results of context-dependent clas-

sification using the background features are summarized by the ROC curves shown

in Figure 7.13. The three black lines correspond to detectors from the literature

that attempt to mitigate contextual effects. The black solid line illustrates the per-

formance of the RX prescreener [124], the black dashed line illustrates performance

of using whitening/dewhitening [129], and the black dotted lines illustrates perfor-

mance of the mixture of Gaussians technique [128]. The colored lines indicate the

performance of trained classifiers. The blue line corresponds to the performance of a

single linear RVM that incorporates no contextual information. Context-dependent

classification with the generative supervised context model is shown in magenta,

and context-dependent classification with the generative DPGMM context model is

shown in red. The performance of discriminative context-dependent learning with

the DPGMM-RVM model is shown in green.

The order of performance is very similar to the GPR results that were shown in

previous chapters. Generative context learning with the DPGMM yields the most

performance improvement. Even at high PD, the ROC curve for context-dependent

classification based on the DPGMM shows the most reduction in PF. Furthermore,

all three context-dependent classification techniques yielded better performance than

the global RVM, but the degree of improvement does not appear to be substantial.

The results of context-dependent learning based on the endmember features are

summarized by the ROC curves in Figure 7.14. Note that in this case, subtracting

the mean of each flyover’s target features caused the global RVM to perform worse

than in Figure 7.13. However, the nonparametric methods yielded much greater

improvement over the single RVM than they did when using background features.
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Figure 7.13: ROC curves for context-dependent classification of HSI data us-
ing background context features. Performance of the RX prescreener (black solid),
whitening/dewhitening (black dashed), mixture of Gaussians (black dotted), global
RVM (blue), generative context-dependent learning with supervised (magenta)
and DPGMM (red) context models, and discriminative context-dependent learning
(green) are compared. The horizontal axis represents probability of false alarm (PF)
and the vertical axis represents probability of detection (PD).

Furthermore, the generative approach with the DPGMM context model did not yield

the greatest performance improvement at high PD. For PDs greater than approxi-

mately 0.85, discriminative context learning illustrates the most substantial reduction

in PF. These results suggest that if all HSI observations were collected under simi-

lar lighting and temperature conditions, endmember-based context learning has the

potential to substantially improve classification performance.
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Figure 7.14: ROC curves for context-dependent classification of HSI data us-
ing endmember context features. Performance of the RX prescreener (black solid),
whitening/dewhitening (black dashed), mixture of Gaussians (black dotted), global
RVM (blue), generative context-dependent learning with supervised (magenta)
and DPGMM (red) context models, and discriminative context-dependent learning
(green) are compared. The horizontal axis represents probability of false alarm (PF)
and the vertical axis represents probability of detection (PD).

7.5 Conclusions

This chapter presented another application of context-dependent learning for buried

threat detection using a sensing modality complementary to GPR. Airborne HSI is a

useful sensing technology for wide-area assessment whose phenomenology exploits the

reflectance properties of disturbed earth known as the reststrahlen effect. Therefore,

HSI sensors such as AHI that are tuned to special reststrahlen bands for disturbed

earth may be useful in buried threat detection applications.
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This chapter compared two approaches to context-dependent classification of HSI

chips centered on anomalies detected by the RX algorithm, which served as a pre-

screener. In both approaches, contextual features were extracted from the back-

ground data, which consisted of the pixels outside of the 5× 5 center region of each

15×15 chip. The first set of context features were motivated by the differences in the

magnitude of background spectra at different times of day. It was shown that spectra

collected in the afternoon had higher magnitude than those collected at morning and

night, and spectra collected at morning and night illustrated magnitude differences

as well. Therefore, context features were extracted by averaging the pixels in the

background region of each image chip, and context learning was performed in either

a supervised manner using qualitative time-of-day labels, or through nonparametric

models such as the DPGMM and the discriminative DPGMM-RVM. Results of con-

text learning showed that the different times of day were easily characterized, and

all three context learning techniques had high mutual information.

The second context learning approach considered the case where there were no

temporal effects. For the purposes of simulating this case, the means of the back-

ground and target data were subtracted for each flyover. Features were extracted

from the background data via spectral unmixing. The ICE algorithm was used to

learn four endmember spectra from all chips’ averaged background spectra. The

endmember abundances were projected onto the corresponding simplex, and context

learning was performed on the resulting 3-D features using supervised and nonpara-

metric methods. Context learning results illustrated that although effects of tem-

poral context were eliminated, nonparametric context learning found many distinct

clusters in the endmember features.

Experimental results compared the performance of context-dependent classifica-

tion using the background and endmember-based context features. Results form

using background features, which was expected to exploit temporal differences in
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spectral signatures, illustrated that context-dependent learning did not yield much

improvement over the single RVM. However, in the case where temporal effects were

removed and endmember features were used, context-dependent learning yielded sub-

stantial improvements over the RVM and discriminative context-dependent learning

showed the best performance at high PD. These results illustrate that despite using

similar context-dependent learning approaches, the degree of improvement over con-

ventional classification can be highly dependent on the contextual information being

exploited.
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8

Conclusions and Future Work

In this dissertation, a variety of nonparametric Bayesian methods for context learning

were proposed for improving the robustness of sensor systems used to detect buried

explosive threats such as landmines or IEDs. However, the novel contributions of this

work have broader application to a variety of current research areas. The following

subsections summarize these contributions, propose avenues for future work, and

discuss the broader implications of the novel context-dependent models that were

developed.

8.1 Summary of Contributions

In Chapter 1, the threat of buried explosives was introduced as a problem of major

concern to militaries and humanitarian organizations. GPR was then introduced as

a valuable tool in detecting landmines and IEDs, since its phenomenology enables

the detection of nonmetal objects. However, the phenomenology of GPR also makes

it sensitive to effects from many aspects of the subsurface environment. Particular

attention was paid to the effects of soil moisture [17–20], rough surface scatter-

ing [23–28], and subsurface heterogeneity [22, 28]. Although techniques based on
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electromagnetic model inversion have been proposed for inferring an object’s true

size and shape based on noisy GPR responses [29–31], these types of approaches

are computationally slow and require a priori measurements of a target’s scattering

properties. Because military route clearance requires real-time processing, and the

IED threat is constantly redefining itself, iterative model inversion may not be the

best approach to improving detection across varying environments.

In this work, a Bayesian learning framework referred to as context-dependent clas-

sification was proposed as a technique for maintaining robust performance across

varying environments. Traditionally, statistical classification would be performed on

a set of target features designed for characterizing target signatures from clutter.

However, in varying environments there can be significant class overlap in the target

feature space that cannot be modeled by a linear decision boundary. In context-

dependent classification, a set of secondary context features were proposed for clus-

tering observations collected under similar environmental conditions. By condition-

ing the classifiers operating in target-space on the clusters learned in context-space,

a complex nonlinear classification problem could potentially be broken down into

several simpler linear ones that are motivated by changes in the ambient sensing

environment.

Although other researchers have proposed context-based learning techniques in

the literature [64, 65], the definition of context used in this work differs from those

used in the past. In this work, context is motivated by the physical state of the world

from which an observation was drawn, and not from the properties of the observation

itself. Regardless of whether a target is present at a particular location, the context of

that location is still the same. It was therefore proposed that contextual information

can be extracted from the background sensor data by exploiting a priori knowledge

about the underlying phenomenology.

In Chapter 2, several physically-motivated contextual features were proposed for
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training a statistical context model. The features were based upon a transmission

line model for GPR A-scans. Although using the transmission line model implies ma-

jor simplifying assumptions about the physics of wave propagation, deviations of the

model from reality could be accounted for by analysis of the features’ statistics. A va-

riety of features were proposed to characterize different soil properties. For example,

energy feature was proposed for characterizing such as soil permittivity, conductiv-

ity, and heterogeneity. A feature based on the reflection coefficient was proposed for

characterizing the dielectric contrast at the air/ground interface. To compute the

reflection coefficient, the ground bounce was isolated and basic radar ranging was

applied. To characterize soil heterogeneity, features based on the matching pursuits

algorithm were proposed for estimating the number of unique reflections that make

up a single A-scan. Finally, features based on linear prediction were proposed for

characterizing the stochastic properties of the background.

To evaluate the performance of these features in characterizing quantitative soil

properties, experiments were performed using simulated and field-collected GPR

data. For these experiments, the features were extracted from GPR data free of

landmine signatures, and statistical regression and classification models were used to

predict known soil properties from the features. In Section 2.3, it was shown that the

features were informative in predicting soil dielectric constant, conductivity, surface

correlation length (roughness), and the expected number of subsurface scatterers

(heterogeneity) from simulated GPR data. The results of the experiment on field-

collected data were presented in Section 2.4. In this experiment, the features were

shown to be informative in estimating measurements of soil moisture and temperature

collected from a nearby meteorological station. These results represent the first

successful application of statistical inference for identifying soil properties from GPR

features that are easy to extract in real-time operation.

In context-dependent classification, the contextual features were used to train a
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statistical context model to partition the training data into M clusters known as con-

texts. Because the contextual features were shown to be characteristic of quantitative

soil properties, performing clustering in that space can group together observations

that were collected in similar environments. After learning the individual contexts,

a unique classifier (the RVM [83] in this work) can be trained on the target features

for discriminating targets from clutter in that context. In this work, the RVMs were

trained on the confidence values of four currently-fielded detection algorithms - a

process referred to as context-dependent fusion.

In Chapter 3, two basic context models were presented. The first was a supervised

context model based on a Gaussian hypothesis test between known qualitative soil

labels: dirt, gravel, asphalt, and concrete. By projecting the contextual features

to 3-D via PCA, and learning a Gaussian distribution for each labeled soil type,

test observations were classified according to the most likely soil type. Although

this approach yielded excellent performance in distinguishing the four different soils,

supervised context learning is highly dependent on quality of the labels. Therefore,

another basic context model was proposed based on unsupervised learning, which

is performed without labels. Basic unsupervised context learning was performed

by estimating the parameters of an M -order GMM from the contextual features.

Although this approach was able to sub-divide each of the four soils into multiple

sub-clusters that could provide more physically-meaningful contextual information,

choosing the order of the model is a separate and difficult task. As a result, it

was concluded that context-dependent classification could potentially benefit from

context models that facilitate learning the number of contexts, in addition to their

statistical distribution in feature space.

Several Bayesian approaches for learning nonparametric context models were pro-

posed in Chapters 4, 5, and 6. The common factor between the proposed nonpara-

metric context models were that they were all infinite-order probabilistic mixtures

194



that incorporated Dirichlet process (DP) priors [103]. The DP prior was used to

control model complexity and facilitate learning of an effective model order. This

property was illustrated through discussion of the Chinese restaurant process and

stick-breaking process in Section 4.2. Because posterior inference cannot be per-

formed analytically for nonparametric mixture models, variational Bayesian (VB)

inference was used to perform approximate inference. An overview of VB was given

in Section E.10.

In Chapter 4, two models were proposed for generative nonparametric context

learning. These models were learned on the context features alone, without regard

to the class (target/clutter) labels or the target features. The first model was the

DPGMM [67], which was able to learn an effective number of Gaussian contexts

without having to specify the number of contexts a priori. The second model was

the DPMFA (adapted from [68,94]) which lifted the restriction of having all contexts

use the same underlying low-dimensional projection. The DPMFA was used to learn

the number of contexts as well as the number of latent factors that characterize each.

The DPGMM and DPMFA were both used to perform context-dependent fusion and

the results were compared. Context-dependent fusion using either model performed

significantly better than a single RVM incorporating no contextual information, but

using the DPGMM led to better performance.

Chapter 5 explored discriminative nonparametric context learning. In contrast to

generative context learning, which treated clustering in the context features and dis-

crimination in the target features as independent tasks, discriminative context learn-

ing performed both tasks jointly. Two methods for discriminative context learning

were compared. The first, referred to as the DPGMM-RVM, consisted of a mixture of

RVMs with a DPGMM gating network. The DPGMM-RVM was shown to perform

clustering in target space while also training the classifiers in target space. The other

method was the IQGME, which was originally proposed in [94] for classification with
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missing data. In contrast to the modified DPGMM-RVM, the IQGME performed

classification and clustering in the joint feature space formed by concatenating the

context and target features. The IQGME also did not utilize sparse component clas-

sifiers. A series of synthetic data examples compared the performance of the two dis-

criminative context models under various scenarios. Furthermore, their performance

in context-dependent fusion were compared. Although both showed significant im-

provement over the single RVM at many points on the ROC curve, performance only

exceeded that of generative context learning at low PD levels. These results suggested

that if the contextual features are effective in generatively clustering according to

relevant contextual factors, discriminative context learning may be unnecessary.

The idea of context as a spatially-varying property was explored further in Chap-

ter 6. In this chapter, contextual features were extracted from the background at

regular intervals. This feature extraction technique was referred to as context sam-

pling. By sampling context throughout all space, context was decoupled from the

anomalies being classified. Instead, context was learned for large stretches of target-

free data so that when an anomaly was encountered, its context would already have

been inferred. Two spatial context models were proposed. The first was based on

the DPGMM, but was trained on features extracted through context sampling. Al-

though the DPGMM was trained on samples collected a large area, in the statistical

sense each sample was treated as an independent observation. Therefore, a context

model based on HMMs was also considered for incorporating the spatial dependency

of samples into inference.

Spatially-dependent context models have a physical motivation, since many con-

textual factors (such as soil moisture) may be localized to a certain area. Therefore,

it may be preferable to use more information from nearby locations when inferring

the context of the present location. For context modeling, the SBHMM [69] was

used as a nonparametric extension of the HMM that allowed for the inference of
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the effective number of spatially-varying states. The performance of the DPGMM

and SBHMM in spatial context modeling were compared, and it was shown that the

SBHMM favored sharp transitions between different contexts while the DPGMM

favored more gradual transitions. With regard to context-dependent fusion perfor-

mance, both spatial context models provided additional performance improvements

over the alarm-based techniques used in previous chapters. However, the DPGMM

appeared to perform more consistently than the SBHMM when multiple realizations

of the models were compared.

Finally, in Chapter 7, the context-dependent classification framework originally

developed for GPR was applied to buried threat detection in airborne HSI data.

Although the same statistical framework was applicable to this problem, different

contextual factors needed to be exploited because the phenomenology of HSI dif-

fers from that of GPR. Two approaches were considered for extracting contextual

information from HSI data. The first utilized the averaged background spectra near

detected anomalies, which was indicative of the relative time of day (morning, af-

ternoon, or night). However, it was also important to consider training data that

did not exhibit such drastic temporal differences. Therefore, the second approach

extracted contextual features from the background using spectral unmixing to yield

the local abundances of several constituent endmember spectra. Context-dependent

classification was performed on HSI data using the supervised, generative DPGMM,

and discriminative DPGMM-RVM modeling techniques. For both sources of con-

textual information, performance was improved over a conventional linear classifier.

However, context modeling based on spectral unmixing led to greater improvements

in performance.
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8.2 Considerations for Fielded Systems

Although the models and algorithms proposed in this dissertation were designed

with fielded application (e.g., HMDS) in mind, a variety of factors have not yet been

considered. In particular, greater attention should be paid to improving the efficiency

of contextual feature extraction. The energy and reflection coefficient features require

only simple calculations, but the process of extracting the matching pursuits and

linear prediction features must be improved for real-time use. The efficiency of

matching pursuits can be improved dramatically by careful design of the dictionary.

This can include restricting the number of elements by limiting the number of pulse

locations (in time), as well as adjusting the width of the pulses to better-reflect the

pulses that make up a GPR A-scan. In this work, the pulse width was set to a single

value that generally matched the width of the transmitted differentiated-Gaussian

pulse. However, dispersion effects in soil propagation are inevitable, and the width

of received pulses may change with time. Better understanding of this phenomenon

may allow for the matching pursuits dictionary to be designed to better-reflect the

structure of GPR A-scans.

The process of extracting contextual features based on linear prediction, as imple-

mented in this work, involved training autoregressive models on individual segments

of GPR data. In the case of alarm-based context learning, these segments consisted

of the 100 A-scans collected before an alarm. In spatial context modeling, the seg-

ments were the 100 A-scans collected before the current background sample, and

therefore much of the data used to compute these features at subsequent samples

was redundant. Because linear prediction filtering is also a major component of the

HMDS prescreening algorithm (see [38]), it may be more efficient to incorporate the

prescreener’s internal calculations into contextual feature extraction. However, the

prescreener was treated in this work as a “black box” and this idea was not explored.
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Aside from feature extraction, as well as algorithm training (which is meant to

be performed offline), all computations involve linear computations and/or canon-

ical probability density functions (see Appendix A). Therefore, if the efficiency of

feature extraction can be improved, context-dependent classification as proposed in

this dissertation should be implementable for real-time processing on a fielded sys-

tem. Performance, obviously, is dependent on sufficient training. The data used

to train the algorithms used in this work was collected in 2009 on domestic mili-

tary reservations, which present operating conditions that are more ideal than field

conditions. Furthermore, although the target population consisted of real anti-tank

landmines and a variety of simulated IEDs, it is a limited subset of the actual buried

explosive threat. Recall from Chapter 1 that the IED threat is constantly changing

and adapting to countermeasures. It is important that if context-dependent learn-

ing (and other buried threat detection algorithms) were to be deployed in a fielded

system, the training data reflect field conditions as closely as possible.

8.3 Future Work

Beyond the questions of how to improve the efficiency of context-dependent fusion

for fielded GPR systems, several unanswered theoretical questions should be the fo-

cus of future work. Future considerations must consider improving learning through

sampling methods, as well as explore new challenges such as discriminative spatial

context learning, comparing context-dependent learning to nonlinear classification

models, and determining whether there is potential for online Bayesian context learn-

ing via nonparametric models.

Although context learning was performed using VB in this work, there is no reason

why Markov chain Monte Carlo (MCMC) techniques such as Gibbs sampling cannot

be used for approximate inference. It is well-known that MCMC is more accurate

than VB, since it is based on sampling the posterior densities rather than iteratively
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optimizing a lower bound from a randomized initial solution. Therefore, MCMC is

not susceptible to converging to a local optimum solution, but this benefit comes

at the expense of greater computational cost. However, because context learning is

performed offline in this work, the greater computational cost of MCMC should not

be a factor.

An question arising from the conclusions from Chapter 6 is whether a sequen-

tial context model can be learned discriminatively. Just as the DPGMM-RVM was

used as a discriminative context model in Chapter 5, it may be possible to learn a

discriminative SBHMM-RVM context model. A hybrid HMM-HME was originally

proposed in [61] for speech recognition applications. Generalizing this model to ac-

commodate a nonparametric HMM (i.e., SBHMM) and a mixture of sparse classifiers

(i.e., RVMs) would be both academically interesting and practical for buried threat

detection and speech recognition alike.

In all performance comparisons, context-dependent classification was compared

to a single linear RVM that incorporated no contextual information. Comparisons to

nonlinear classifiers, such as a kernel RVM, using the combined target and contextual

features were never made. Although nonlinear classifiers may be competitive with

alarm-based context-dependent learning, they would do so by including context as

additional features of an observation rather than the state of the world at a given

location. The comparisons made to IQGME in Chapter 5 address this issue, illus-

trating the advantages and disadvantages of performing context learning in separate

feature spaces for alarm-based classification. However, it would be difficult to adapt

IQGME or a nonlinear classifier that utilizes contextual information in the same

fashion as the spatial context models presented in Chapter 6. By treating context

as a property of a continuously-varying environment, and not a property of discrete

observations within that environment, context-dependent learning satisfies our intu-

ition in a way that nonlinear classification does not. Future work should consider a
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series of synthetic data experiments, and other real-world examples outside of buried

threat detection, to illustrate this important difference between context-dependent

learning and standard nonlinear classification.

Future investigations must also consider what to do when new contexts are en-

countered in the field. This is a legitimate question, since the fielded algorithm

would be trained on domestic data collected under somewhat idealized conditions.

If a system using context-dependent classification as proposed in this work were to

enter a previously-unseen context, the contextual features extracted from the data

would appear to be statistical outliers. Although the likelihood of being in any one

of the known contexts would be very small, the differences in likelihood between

the contexts could be an order of magnitude (i.e. 10−4 versus 10−6) and posterior

inference would favor with surety the context with the greater likelihood. This could

be modified by imposing a likelihood threshold, and if the likelihoods of all contexts

fall below it each one would be treated as equally-unlikely. This would result in

the system behaving in these conditions as if it were incorporating no contextual

information at all.

However, online context learning may be a more attractive option for dealing

with newly-encountered environments. This type of learning may be supported by

the Dirichlet process. Recall the Chinese restaurant process; as more people enter the

restaurant, tables that were empty at one time will fill up as time progress. Therefore,

as more data is collected in the field, new context distributions can potentially be

learned. To make online context learning viable, VB must be used to conserve

processing resources. However, online VB for nonparametric models is still being

explored for previously-developed nonparametric models [138, 139]. It should also

be noted that the Chinese restaurant process does not support customers moving

between tables. This suggests that although the DP may be a useful prior in learning

new contexts as they are encountered, it may present difficulties in forgetting contexts
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that are never seen in the field.

8.4 Broader Applications

Context-dependent classification as proposed in this dissertation may have broader

application to areas outside of GPR and HSI sensing. The most general implication

of this work is the notion that contextual factors can be embraced, rather than

mitigated, to improve performance. This concept can be applied to a variety of

statistical learning applications in the sensing field and beyond.

An example of another sensing technology that may benefit from context-dependent

learning is laser induced breakdown spectroscopy (LIBS), which has shown potential

for use in “fingerprinting” different chemical compounds [140,141]. LIBS operates by

focusing a highly-powered laser onto a material to form a plasma. The plasma emits

a distinctive spectrum that characterizes the material’s chemical composition. In

applications of LIBS to classify classifying chemical, biological, radiological, nuclear,

and explosive (CBRNE) residues, plasma will also be formed from the background

substrate, resulting in the background spectrum being mixed with the spectrum of

interest. Preliminary studies based on the work presented in this dissertation have

suggested that residues could be better-classified by LIBS if the spectrum of the

background is correctly identified first, suggesting that fieldability of LIBS sensors

may be improved by embracing a context-dependent treatment of the classification

problem [142].

Another area that may benefit from context-dependent classification may be in

neurological prostheses, such as brain-computer interfaces (BCI). Systems such as the

P300 speller exploit features of electroencephalogram (EEG) signals, recorded by an

electrode cap worn by an amyotrophic lateral sclerosis (ALS) patient, to select char-

acters as they become highlighted on a computer display [143]. A problem currently

being investigated for BCI is channel selection, i.e. determining which electrodes are
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most informative for identifying when the correct character was selected [144]. Just

as a priori knowledge of GPR and HSI phenomenology was leveraged as a source of

contextual information for improving detection of buried objects in that data, neu-

roscience may be a source of contextual information for performing channel selection

in BCI. By anticipating which section of the brain would yield the most informative

response, character identification performance and overall system throughput can

potentially be improved.

Finally, context-dependent learning may someday find applications in the broader

area of statistical data mining. Many experts have noted that society is entering

the age of big data, and virtually all industries are demanding intelligent process-

ing solutions to facilitate decision-making [145]. This problem has been brought

to mainstream attention over recent years through a highly-publicized data mining

competition spearheaded by Netflix, which sought to improve its movie recommen-

dation algorithm [146]. As more customer data becomes available through Internet

transactions and social networks, online service providers will have more consumer

information available to them than ever before. For example, in recommending mu-

sic to listeners, leading algorithms identify the genre of a recording solely based on

frequency-domain features of the audio signal (e.g., [113, 147]). However, valuable

contextual information is also available through associated metadata (artist biog-

raphy, lyrics, subject matter) as well as in complementary media such as books or

films that the customer also enjoys. The consumption of media by a user’s friends

may also be a source of contextual information in making a recommendation to a

particular user.

In conclusion, significant contributions to the remote sensing and machine learn-

ing fields were made through this work. Several Bayesian techniques for context

learning were proposed, and they were shown to provide useful information to im-

prove the performance of GPR and HSI systems used for detecting landmines and
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IEDs. Success was achieved in further bridging the fields of physics and statistics.

It was illustrated that the statistics of data obtained through physical phenomena

that are often overlooked can, in fact, be leveraged in making decisions. The results

presented throughout this dissertation demonstrated that by thinking ”out of the

box”, and approaching a problem from a different angle than previous researchers,

fielded technologies can continue to be improved upon.
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Appendix A

Probability Distributions

The probability distributions for all random variables considered in this dissertation

are presented in this appendix. For each distribution, the functional form of the

PDF, descriptions of the parameters, and moments necessary for all calculations are

provided. The written formats of the PDFs are based on Bishop’s text [71].

A.1 Bernoulli Distribution

The Bernoulli distribution is for a single binary variable, x ∈ {0, 1}, representing

either a positive or null outcome of an experiment. The random variable, x, is

denoted as Bernoulli-distributed by

x ∼ Bernoulli (x|θ) . (A.1)

A.1.1 Parameters

The parameter of the Bernoulli distribution is θ, such that

θ = p (x = 1) . (A.2)
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A.1.2 Probability Density Function

The density function for the Bernoulli distribution is

p (x|p) = xp (1− x)1−p . (A.3)

A.1.3 Moments

The mean and variance of the Bernoulli distribution are

E [x] = θ, (A.4)

Var [x] = θ (1− θ) . (A.5)

A.1.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Bernoulli distributions is

KLD [q (x|θq) ||p (x|θp)] = θq log
θq
θp

+ (1− θq) log
1− θq
1− θp

. (A.6)

A.2 Binomial Distribution

The binomial distribution gives the probability of observing x positive Bernoulli trials

in N experiments. The random variable, x, is denoted as binomial-distributed by

x ∼ Binomial (x|N, θ) . (A.7)

A.2.1 Parameters

Like the Bernoulli distribution, the parameter of the binomial distribution is θ, such

that

0 ≤ θ ≤ 1 (A.8)
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A.2.2 Probability Density Function

The density function for the binomial distribution is

p (x|N, θ) =

(
N

x

)
θx (1− θ)N−x . (A.9)

A.2.3 Moments

The mean and variance of the binomial distribution are

E [x] = Nθ, (A.10)

Var [x] = Nθ (1− θ) . (A.11)

A.2.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Binomial distributions is:

KLD [q (x|Nq, θq) ||p (x|Np, θp)] =
N∑
i=0

(
Nq

i

)
θiq (1− θq)Nq−i log

[(
Nq
i

)
θiq (1− θq)Nq−1(

Np
i

)
θip (1− θp)Np−1

]
(A.12)

A.3 Multinomial Distribution

The multinomial distribution is a multivariate generalization of the Bernoulli distri-

bution to a D-dimensional binary variable x, with elements xd ∈ {0, 1} constrained

to sum to unity, i.e.
∑

d xd = 1. The random vector, x, is denoted as multinomial-

distributed by

x ∼ Multinomial (x|θ) . (A.13)

A.3.1 Parameters

The parameter of the multinomial distribution is the probability vector θ, whose

elements must satisfy the following:

0 ≤ θd ≤ 1, d = 1, 2, ..., D, (A.14)
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D∑
d=1

θd = 1. (A.15)

A.3.2 Probability Density Function

The density function for the multinomial distribution is

p (x|θ) =
D∏
d=1

θxdd (A.16)

A.3.3 Moments

The mean and variance of the multinomial distribution are:

E [xd] = θd (A.17)

Var [xd] = θd (1− θd) (A.18)

A.3.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Multinomial distributions is:

KLD [q (x|θq) ||p (x|θp)] =
D∑
d=1

θqd log
θqd
θpd

(A.19)

A.4 Beta Distribution

The Beta distribution is for the continuous variable, x ∈ [0, 1]. Since the Beta

distribution has finite support between zero and one, it is often used to represent

uncertainty in the probability of an event. The random variable, x, is denoted as

Beta-distributed by

x ∼ Beta (x|a, b) . (A.20)
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A.4.1 Parameters

The parameters of the Beta distribution are a and b, such that

a > 0, (A.21)

b > 0. (A.22)

A.4.2 Probability Density Function

The density function for the Beta distribution is

p (x|a, b) =
Γ (a+ b)

Γ (a) Γ (b)
xa−1 (1− x)b−1 , (A.23)

where Γ (·) denotes the Gamma function given by

Γ (z) =

∫ ∞
0

e−ttz−1dt (A.24)

A.4.3 Moments

The mean and variance of the Beta distribution are:

E [x] =
a

a+ b
(A.25)

Var [x] =
ab

(a+ b)2 (a+ b+ 1)
(A.26)

A.4.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Beta distributions is.

KLD [q (x|aq, bq) ||p (x|ap, bp)] = log
Γ (aq + bq)

Γ (ap + bp)
+ log

Γ (ap)

Γ (aq)
+ log

Γ (bp)

Γ (bq)

+ [aq − ap] [ψ (aq)− ψ (aq + bq)]

+ [bq − bp] [ψ (bq)− ψ (aq + bq)] .

(A.27)
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A.5 Dirichlet Distribution

The Dirichlet distribution is a multivariate extension of the Beta distribution for a

D-dimensional vector, x. The random vector, x, is denoted as Beta-distributed by

x ∼ Dir (x|α) . (A.28)

A.5.1 Parameters

The parameters of the Dirichlet distribution are the elements of the vector, α, such

that

0 ≤ αd ≤ 1, d = 1, 2, ..., D, (A.29)

D∑
d=1

αd = 1. (A.30)

A.5.2 Probability Density Function

The density function for the Dirichlet distribution is

p (x|α) =
Γ
(∑D

d=1 αd

)
∏D

d=1 Γ (αd)

D∏
d=1

xαd−1d . (A.31)

A.5.3 Moments

The mean and variance of the Dirichlet distribution are

E [xd] =
αd∑D
k=1 αk

, (A.32)

Var [xd] =
αd

(
−αd +

∑D
k=1 αk

)
(∑D

k=1 αk

)2 (
1 +

∑D
k=1 αk

) . (A.33)
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A.5.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence between two Dirichlet distributions is

KLD [q (x|αq) ||p (x|αp)] = log
Γ
(∑D

d=1 αqd

)
Γ
(∑D

d=1 αpd

) +
D∑
d=1

log
Γ
(
αpd
)

Γ
(
αqd
)

+
D∑
d=1

[
αqd − αpd

] [
ψ
(
αqd
)
− ψ

(
D∑
k=1

αqk

)]
.

(A.34)

A.6 Gamma Distribution

The Gamma distribution is over a positive random variable, x > 0, governed by

two positive parameters to ensure proper normalization. The random variable, x, is

denoted as Gamma-distributed by

x ∼ Gamma (x|a, b) . (A.35)

A.6.1 Parameters

The parameters of the Gamma distribution are a and b, such that

a > 0, (A.36)

b > 0. (A.37)

A.6.2 Probability Density Function

The density function for the Gamma distribution is

p (x|a, b) =
1

Γ (a)
baxa−1e−bx, (A.38)

where Γ (·) denotes the Gamma function given by (A.24).
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A.6.3 Moments

The mean and variance of the Gamma distribution are:

E [x] =
a

b
(A.39)

Var [x] =
a

b2
(A.40)

A.6.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Gamma distributions is

KLD [q (x|aq, bq) ||p (x|ap, bp)] =(aq − 1)ψ(aq) + log bq − aq − log Γ(aq) + log Γ(ap)

− ap log bp − (ap − 1) [ψ(aq)− log bq] +
aqbp
bq

,

(A.41)

where ψ (·) is the digamma function defined by

ψ (x) =
d

dx
log Γ (x) . (A.42)

A.7 Normal (Gaussian) Distribution

The Normal distribution of the continuous variable, x, has infinite support and is

governed by the mean and variance parameters. The random variable, x, is denoted

as Normally-distributed by

x ∼ N (x|µ, σ) . (A.43)

A.7.1 Parameters

The parameters of the Normal distribution are µ and σ, such that

−∞ < µ <∞, (A.44)

σ > 0. (A.45)
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A.7.2 Probability Density Function

The density function for the Normal distribution is

p (x|µ, σ) =
1√

2πσ2
e
−(x−µ)2

2σ2 . (A.46)

A.7.3 Moments

E [x] = µ (A.47)

Var [x] = σ2 (A.48)

A.7.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Normal distributions is

KLD [q(x|µq, σq)||p(x|µp, σp)] =
1

2
log

σ2
p

σ2
q

+
µ2
q + µ2

p + σ2
q − 2µqµp

2σ2
p

− 1

2
. (A.49)

A.8 Multivariate Normal (Gaussian) Distribution

The multivariate extension of the Normal distribution is over the D-dimensional

random vector, x, whose elements xd ∈ (−∞,∞) for d = 1, 2, ..., D. The distribution

is governed by the mean vector and covariance matrix. The random vector, x, is

denoted as Normally-distributed by

x ∼ N (x|µ,Σ) . (A.50)

A.8.1 Parameters

The parameters of the Normal distribution are µ and Σ, such that

−∞ < µd <∞, d = 1, 2, ..., D, (A.51)

Σ is positive-definite. (A.52)
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A.8.2 Probability Density Function

The density function for the multivariate Normal distribution is

p (x|µ,Σ) = (2π)−D/2 |Σ|−1/2e−
1
2
(x−µ)TΣ−1(x−µ). (A.53)

A.8.3 Moments

The mean and covariance elements are:

E [x] = µ (A.54)

E [xdxk] = µdµk + Σdk (A.55)

Cov [x] = Σ (A.56)

A.8.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two multivariate Normal distribu-

tions is

KLD
[
q(x|µq,Σq)||p(x|µq,Σp)

]
=

1

2
log
|Σp|
|Σq|

+
1

2
Tr
[
Σ−1p Σq

]
+

1

2

(
µq − µp

)T
Σ−1p

(
µq − µp

)
− D

2
.

(A.57)

A.9 Wishart Distribution

The Wishart distribution is over the D×D matrix Λ, and is the conjugate prior for

the precision (inverse covariance) matrix of a multivariate Normal distribution. The

random matrix, Λ, is denoted as Wishart-distributed by

Λ ∼ W (Λ|W, ν) . (A.58)
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A.9.1 Parameters

The parameters of the Wishart distribution are the degrees of freedom, ν, and the

scale matrix, W, which must satisfy the following:

ν > D − 1 (A.59)

W is positive definite. (A.60)

A.9.2 Probability Density Function

The density function for the Wishart distribution is

p (Λ|W, ν) = B (W, ν) |Λ|
ν−D−1

2 exp

(
−1

2
Tr
[
W−1Λ

])
, (A.61)

where

B (W, ν) = |W|−ν/2
[

2νD/2πD(D−1)/4
D∏
d=1

Γ

(
ν + 1− d

2

)]−1
. (A.62)

A.9.3 Moments

The expected values of Λ and log |Λ| are

E [Λ] = νW (A.63)

E [log |Λ|] =
D∑
d=1

ψ

(
ν + 1− d

2

)
+D log 2 + log |W|, (A.64)

where ψ (·) is the digamma function defined by (A.42).
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A.9.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD) between two Wishart distributions is

KLD [q(Λ|Wq, νq)||p(Λ|Wp, νp)]

=

(
νq −D − 1

2

)( D∑
d=1

ψ

(
νq − d+ 1

2

)
+D log 2 + log |Wq|

)

−
(
νp −D − 1

2

)( D∑
d=1

ψ

(
νp − d+ 1

2

)
+D log 2 + log |Wp|

)

− νqD

2
+
νq
2

Tr
(
B−1p Bq

)
+ log

2νpD/2|Bp|−νp/2ΓD (νp/2)

2νqD/2|Bq|−νq/2ΓD (νq/2)
.

(A.65)

A.10 Normal-Wishart Distribution

The Normal-Wishart distribution is a joint density over the D× 1 vector, x, and the

D×D matrix, Λ. It is the conjugate prior for a multivariate Normal distribution with

unknown mean and precision (inverse covariance) matrix. The random variables,

(x,Λ) are denoted as Normal-Wishart distributed by

(x,Λ) ∼ N
(
x|µ, u−1Λ−1

)
W (Λ|W, ν) . (A.66)

A.10.1 Parameters

The parameters of the Normal-Wishart distribution involve many of the same param-

eters of the Normal and Wishart distributions. They include the location (mean),

µ; a precision scale, u; the degrees of freedom, ν; and the scale matrix, W, which

must satisfy the following:

−∞ ≤ µd ≤ ∞, d = 1, 2, ..., D (A.67)

u > 0 (A.68)

ν > D − 1 (A.69)

W is positive definite. (A.70)
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A.10.2 Probability Density Function

The density function for the Normal-Wishart distributions is obtained by multipli-

cation of the Normal and Wishart density functions, which yields

p (x,Λ|µ, u,W, ν)

=N
(
x|µ, u−1Λ−1

)
W (Λ|W, ν)

=B (W, ν) (2π)−D/2 |uΛ|1/2|Λ|
ν−D−1

2 exp

(
−1

2

[
(x− µ)T uΛ (x− µ)

+ Tr
(
W−1Λ

)])
.

(A.71)

where B (W, ν) is defined in (A.62).

A.10.3 Moments

The expected values of x and Λ follow the Normal and Wishart distributions:

E
[
x|u−1Λ−1

]
= µ (A.72)

E [Λ] = νW (A.73)

E [log |Λ|] =
D∑
d=1

ψ

(
ν + 1− d

2

)
+D log 2 + log |W|, (A.74)

where ψ (·) is the digamma function defined by (A.42).

A.10.4 Kullback-Leibler Divergence

The Kullback-Leibler Divergence between two Normal-Wishart distributions is

KLD
[
q
(
x,Λ|µq, uq,Wq, νq

)
||p
(
x,Λ|µp, up,Wp, νp

)]
=
D

2

(
up
uq

+ log
uq
up
− 1

)
+

1

2

(
µq − µp

)T
upνqWq

(
µq − µp

)
+ KLD [W (Λ|Wq, νq) ||W (Λ|Wp, νp)] ,

(A.75)
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where KLD [W (Λ|Wq, νq) ||W (Λ|Wp, νp)] is a Kullback-Leibler divergence between

two Wishart distributions.
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Appendix B

Relevance Vector Machines

The relevance vector machine (RVM), originally proposed by Tipping [83], was used

in this work as a statistical model for classification and regression. In this appendix,

the variational Bayesian update equations for a single RVM regressor/classifier [84]

and a mixture of RVM classifiers are presented.

The RVM is a sparseness-promoting technique for Bayesian inference of regression

and classification models. Like support vector machines (SVMs) [92], RVMs seek a

sparse weighting of kernel-transformed features. While the SVM accomplishes this

by maximizing the margin between classes, the RVM utilizes sparseness-promoting

priors. The overall effect is a model that does not require tuning (due to the use of

noninformative priors) and has different sparseness properties.

219



B.1 RVM Regression

B.1.1 Generative Model and Variable Definitions

yn = wTφ (xn)T (B.1)

(tn|w,xn) ∼ N
(
tn|yn, τ−1

)
(B.2)

n = 1, 2, ..., N is observation index

d = 1, 2, ..., D is dimension index

xn is feature vector of observation n

φ(xn) is a D-dimensional kernel transformation of xn

w is a D-dimensional weight vector

yn is the model output for observation n

tn is the target value for observation n

τ is the precision of t

B.1.2 Priors

w ∼ N
(
w|0,A−1

)
, where A = diag (α) (B.3)

αd ∼ Gamma (αd|a0, b0) (B.4)

τ ∼ Gamma (τ |c0, d0) (B.5)

B.1.3 Variational Posterior on w

It was derived in Section that the NFE is maximized by a variational posterior,

q (w), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (w) ∝ 〈log p (w|−)〉 (B.6)
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The true log-posterior may be calculated from Bayes’ theorem:

log p (w|−) = log p (t|X,w) + log p (w)−K, (B.7)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of w, then taking the variational

expectation 〈·〉:
log p (w|−)

=
N∑
n=1

[
��

�
��
�

−1

2
log 2π +

�
�
��1

2
log τ − τ

2
(tn − yn)2

]
−
�
��

��P

2
log 2π +

��
�
��1

2
log |A| − 1

2
wTAw −K

= −1

2

(
τ

N∑
n=1

[
tn −wTφ (xn)T

]2
+ wTAw

]
−K

= −1

2


�
�
�
�

τ
N∑
n=1

t2n − 2wT τ
N∑
n=1

tnφ(xn) + τ
N∑
n=1

wTφ (xn)T w + wTAw

−K
= −1

2

(
−2wT τ

N∑
n=1

tnφ (xn) + wT

[
A + τ

N∑
n=1

φ (xn)φ (xn)T
]

w

)
−K

(B.8)

Completing the square reveals that w is Gaussian:

log p (w|−) = logN (w|m,Σ) (B.9)

where

m = τΣ
N∑
n=1

tnφ (xn) (B.10)

Σ =

[
A + τ

N∑
n=1

φ (xn)φ (xn)T
]−1

, (B.11)

Useful moments in VB updates for other model parameters:

〈w〉 = m (B.12)

〈wwT 〉 = mmT + Σ (B.13)

221



B.1.4 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (B.14)

The true posterior may be calculated from Bayes’ theorem:

p(α‖−) ∝ p (w|α) p (α) (B.15)

The variational posterior can be calculated by solving the true posterior as a function

of α, then taking the variational expectation 〈·〉:

p (α|−) ∝
D∏
d=1
��

��(2π)−
1
2α

1
2
d exp

(
−αdw

2
d

2

)
�
�
��ba00

Γ(a0)
αa0−1d exp (−bαd)

∝
D∏
d=1

α
1
2
d exp

(
−αdw

2
d

2

)
αa0−1d exp (−b0αd)

∝
D∏
d=1

α
a0+

1
2
−1

d exp

(
−αd

[
b0 +

1

2
w2
d

])
(B.16)

Therefore, the α’s are Gamma distributed:

p (α|−) =
D∏
d=1

Gamma (αd|ad, bd) , (B.17)

where

ad = a0 +
1

2
(B.18)

bd = b0 +
1

2
w2
d, (B.19)

Useful moments in VB updates for other model parameters:

〈αd〉 =
ad
bd

(B.20)
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B.1.5 Variational Posterior on τ

It was derived in Section that the NFE is maximized by a variational posterior,

q (τ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (τ) ∝ 〈log p(τ |−)〉 (B.21)

The true posterior may be calculated from Bayes’ theorem:

p(τ |−) ∝ p (t|X, τ) p (τ) (B.22)

The variational posterior can be calculated by solving the true posterior as a function

of τ , then taking the variational expectation 〈·〉:

p(τ |−) ∝
N∏
n=1

[
τ

1
2
�
��
�

(2π)−
1
2 exp

(
−τ (tn − yn)2

2

)]
�
�
��dc00

Γ(c0)
τ c0−1 exp (−d0τ)

∝τ
N
2 exp

[
−τ
∑N

n=1 (tn − yn)2

2

]
τ c0−1 exp (−d0τ)

∝ exp

(
−τ

[
d0 +

∑N
n=1

(
tn −wTφ (xn)

)2
2

])
τ
N
2
+c0−1

∝ exp

[
−τ

(
d0 +

1

2

N∑
n=1

t2n −wT

N∑
n=1

tnφ (xn) +
1

2

N∑
n=1

φ (xn)T wwTφ (xn)

)]
τ
N
2
+c0−1

(B.23)

Therefore, τ is Gamma-distributed:

p(τ |−) = Gamma (τ |c, d) (B.24)

where

c = c0 +
N

2
(B.25)

d = d0 +
1

2

N∑
n=1

t2n −wT

N∑
n=1

tnφ (xn) +
1

2

N∑
n=1

φ (xn)T wwTφ (xn) (B.26)
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,

Useful moments in VB updates for other model parameters:

〈τ〉 =
c

d
(B.27)

〈log τ〉 = ψ(c)− ψ(d), where ψ(φ) =
d

dφ
log Γ(φ) (B.28)

B.1.6 Negative Free Energy

The negative free energy (NFE) serves as the variational lower bound to the true log-

evidence. Therefore, in it serves as an optimization criterion for variational learning.

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the

priors:

F =〈log p(t|w,X)〉 −KLD [q (w) q (A) q (τ) ||p (w|A) p (A) p (τ)]

=〈log p(t|w,X)〉 −KLD [q (w) ||p (w|A)]

−
D∑
d=1

KLD [q (αd) ||p (αd)]−KLD [q (τ) ||p (τ)]

=− N

2
log 2π +

N

2
〈log τ〉 − 〈τ〉

2

N∑
n=1

[
tn − 〈wT 〉φ (xn)

]2

−KLD [q (w) ||p (w|A)]−
D∑
d=1

KLD [q (αd) ||p (αd)]−KLD [q (τ) ||p (τ)]

(B.29)

where KLD [q (w) ||p (w|A)] is a KLD between two Gaussian distributions,

KLD [q (αd) ||p (αd)] is a KLD between two Gamma distributions, and KLD [q (τ) ||p (τ)]

is also a KLD between two Gamma distributions.
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B.2 RVM Classification

B.2.1 Generative Model and Variable Definitions

yn = wTφ (xn)T (B.30)

σ (yn) =
1

1 + e−yn
(B.31)

(tn|w,xn) ∼ σ(yn)tn [1− σ(yn)]1−tn (B.32)

n = 1, 2, ..., N is observation index

d = 1, 2, ..., D is dimension index

xn is feature vector of observation n

φ(xn) is a D-dimensional kernel transformation of xn

σ (·) is the logistic sigmoid function

w is a D-dimensional weight vector

yn is the model output for observation n

tn is the binary label for observation n

τ is the precision of t

B.2.2 Priors

w ∼ N
(
w|0,A−1

)
, where A = diag (α) (B.33)

αd ∼ Gamma (αd|a0, b0) , typically a0 = b0 = 10−6 (B.34)

B.2.3 Approximate Likelihood

Because the binomial distribution on t does not offer conjugate updating for our

choice of the prior on w, we impose a lower-bound approximation to the likelihood,
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p(tn|w,xn), that was proved by Jakkola and Jordan [97]:

p(tn|w,xn) ≥ σ (ξn) exp

[
γn − ξn

2
− λ (ξn)

(
γ2n − ξ2n

)]
(B.35)

where ξn is a variational parameter and

γn = (2tn − 1) yn (B.36)

λ (ξn) =
1

4ξn
tanh

(
ξn
2

)
(B.37)

Therefore, the log-likelihood will be approximated as

log p(tn|w,xn) ≥ log σ (ξn) +
1

2
(γn − ξn)− λ (ξn)

(
γ2n − ξ2n

)
(B.38)

B.2.4 Variational Posterior on w

It was derived in Section that the NFE is maximized by a variational posterior,

q (w), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (w) ∝ 〈log p (w|−)〉 (B.39)

The true log-posterior may be calculated from Bayes’ theorem:

log p (w|−) = log p (t|X,w) + log p (w)−K, (B.40)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of w, then taking the variational

expectation 〈·〉:
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log p (w|−)

=
N∑
n=1

[
���

��log σ (ξn) +
1

2
(γn −��ξn)− λ (ξn)

(
γ2n − ��ξ

2
n

)]
− 1

2

[
���

��P log 2π +���
�log |A|+ wTAw

]
−K

=− 1

2

[
wTAw +

N∑
n=1

(
2λ (ξn) γ2n − γn

)]
−K

=− 1

2

[
wTAw +

N∑
n=1

(
2λ (ξn) wTφ (xn)φ (xn)Tw − (2tn − 1) wTφ (xn)

)]
−K

=− 1

2

[
−2wT

(
1

2

N∑
n=1

(2tn − 1)φ (xn)

)
+ wT

(
A + 2

N∑
n=1

λ (ξn)φ (xn)φ (xn)T
)

w

]
−K

(B.41)

Completing the square reveals that w is Gaussian:

log p (w|−) = logN (w|m,Σ) (B.42)

where

m =
1

2
Σ

(
N∑
n=1

(2tn − 1)φ (xn)

)
(B.43)

Σ =

(
A + 2

N∑
n=1

λ (ξn)φ (xn)φ (xn)

)−1
, (B.44)

Useful moments in VB updates for other model parameters:

〈w〉 = m (B.45)

〈wwT 〉 = mmT + Σ (B.46)

B.2.5 Updating ξ

Since the variational parameter ξ is assumed known (i.e. no prior or posterior den-

sity), the updates cannot be found starting with Bayes’ theorem. Update equations
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can still be derived by directly optimizing the NFE:

F =〈log p(t|X,w)〉 −KLD [q (w) ||p (w)]−KLD [q (A) ||p (A)]

∂F
∂ξ

=
∂

∂ξ
〈log p(t|X,w)〉

(B.47)

Substituting the approximation for p(tn|w,xn):

∂F
∂ξ

=
N∑
n=1

[
1

1 + eξn
− 1

2
+ 2ξnλ(ξn)− ∂λ(ξn)

∂ξn

(
〈γ2n〉 − ξ2n

)]

=
N∑
n=1

[
e−ξn/2

eξn/2 + e−ξn/2
+

1
2
eξn/2 − 1

2
e−ξn/2

eξn/2 + e−ξn/2
− 1

2
− ∂λ(ξn)

∂ξn

(
〈γ2n〉 − ξ2n

)]

=
N∑
n=1

[
1
2
eξn/2 + 1

2
e−ξn/2

eξn/2 + e−ξn/2
− 1

2
− ∂λ(ξn)

∂ξn

(
〈γ2n〉 − ξ2n

)]

=−
N∑
n=1

∂λ(ξn)

∂ξn

(
〈γ2n〉 − ξ2n

)

(B.48)

Because the derivative of λ(ξn) is purely negative, F is maximized at

ξ2n = 〈γ2n〉 = φ (xn)T 〈wwT 〉φ (xn) (B.49)

B.2.6 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (B.50)

The true posterior may be calculated from Bayes’ theorem:

p (α|−) ∝ p (W|α) p (α) (B.51)
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The variational posterior can be calculated by solving the true posterior as a function

of α, then taking the variational expectation 〈·〉:

p (α|−) ∝
D∏
d=1
��

��(2π)−
1
2α

1
2
d exp

(
−αdw

2
d

2

)
�
�
��ba00

Γ(a0)
αa0−1d exp (−b0αd)

∝
D∏
d=1

α
1
2
d exp

(
−αdw

2
d

2

)
αa0−1d exp (−b0αd)

∝
D∏
d=1

α
a0+

1
2
−1

d exp

(
−αd

[
b0 +

1

2
w2
d

])
(B.52)

Therefore, the α’s are Gamma distributed:

q (α) =
D∏
d=1

Gamma (αd|ad, bd) , (B.53)

where

ad = a0 +
1

2
(B.54)

bd = b0 +
1

2
w2
d, (B.55)

Useful moments in VB updates for other model parameters:

〈αd〉 =
ad
bd

(B.56)

B.2.7 Negative Free Energy

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the
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priors:

F =〈log p(t|w,X)〉 −KLD [q (w) q (A) ||p (w|A) p (A)]

=〈log p(t|w,X)〉 −KLD [q (w) ||p (w|A)]−
D∑
d=1

KLD [q (αd) ||p (αd)]

=
N∑
n=1

log σ (ξn) +
1

2
(〈γn〉 − ξn)− λ (ξn)

(
〈γn〉2 − ξ2n

)

−KLD [q (w) ||p (w|A)]−
D∑
d=1

KLD [q (αd) ||p (αd)]

=
N∑
n=1

log σ (ξn) +
1

2

[
(2tn − 1)φ (xn)T 〈w〉 − ξn

]
− λ (ξn)

(
φ (xn)T 〈wwT 〉φ (xn)− ξ2n

)

−KLD [q (w) ||p (w|A)]−
D∑
d=1

KLD [q (αd) ||p (αd)]

(B.57)

where KLD [q (w) ||p (w|A)] is a KLD between two Gaussian distributions, and

KLD [q (αd) ||p (αd)] is a KLD between two Gamma distributions.

B.3 Mixture of RVM Classifiers

B.3.1 Generative Model and Variable Definitions

ynm = wT
mφ (xn)T (B.58)

σ (ynm) =
1

1 + e−ynm
(B.59)

(tn|W,xn, c) ∼
(
σ(ynm)tn [1− σ(ynm)]1−tn

)
cnm (B.60)

n = 1, 2, ..., N is observation index

d = 1, 2, ..., D is dimension index
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m = 1, 2, ...,M is mixture component index

xn is feature vector of observation n

φ(xn) is a D-dimensional kernel transformation of xn

σ (·) is the logistic sigmoid function

wm is a D-dimensional weight vector

ym is the model m output for observation n

tn is the binary label for observation n

cn = {cnm} is a latent variable governing mixture component selection

τ is the precision of t

B.3.2 Priors

wm = N
(
wm|0,A−1m

)
, where Am = diag (αm) (B.61)

αmd ∼ Gamma (αmd|a0, b0) , typically a0 = b0 = 10−6 (B.62)

B.3.3 Variational Posterior on w

It was derived in Section that the NFE is maximized by a variational posterior,

q (W), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (W) ∝ 〈log p (W|−)〉 (B.63)

The true log-posterior may be calculated from Bayes’ theorem:

log p (W|−) = log p (t|W,X,−) + log p (W)−K, (B.64)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of W, then taking the variational

expectation 〈·〉:
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logp (W|−)

=
N∑
n=1

M∑
m=1

cnm

[
���

���log σ (ξnm) +
1

2
(γn −���ξnm)− λ (ξnm)

(
γ2nm −���ξ

2
nm

)]

− 1

2

M∑
m=1

[
���

��P log 2π +���
��log |Am|+ wT

mAmwm

]
−K

=− 1

2

M∑
m=1

[
wT
mAmwm +

N∑
n=1

cnm
(
2λ (ξnm) γ2nm − γnm

)]
−K

=− 1

2

M∑
m=1

[
wT
mAmwm +

N∑
n=1

cnm

(
2λ (ξnm) wT

mφ (xn)φ (xn)Twm − (2tn − 1) wT
mφ (xn)

)]
−K

=− 1

2

M∑
m=1

[
−2wT

m

(
1

2

N∑
n=1

cnm (2tn − 1)φ (xn)

)

+ wT
m

(
Am + 2

N∑
n=1

cnmλ (ξnm)φ (xn)φ (xn)T
)

wm

]
−K

(B.65)

Completing the square reveals that W is Gaussian:

log p (W|−) =
M∑
m=1

logN (wm|mm,Σm) (B.66)

where

mm =
1

2
Σm

(
N∑
n=1

cnm (2tn − 1)φ (xn)

)
(B.67)

Σm =

(
Am + 2

N∑
n=1

cnmλ (ξnm)φ (xn)φ (xn)

)−1
, (B.68)

Useful moments in VB updates for other model parameters:

〈wm〉 = mm (B.69)
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〈wmwT
m〉 = mmmT

m + Σm (B.70)

B.3.4 Updating ξ

Since the variational parameter ξ is assumed known (i.e. no prior or posterior den-

sity), the updates are found by directly optimizing the negative free energy:

F =〈log p(t|X,W)〉 −KLD [q (W) ||p (W)]−KLD [q (A) ||p (A)]

∂F
∂ξ

=
∂

∂ξ
〈log p(t|X,W)〉

∂F
∂ξ

=
N∑
n=1

M∑
m=1

∂

∂ξnm
〈log p(tn|xn,wm)〉

(B.71)

Substituting the approximation for p(tn|W,xn):

∂F
∂ξ

=
N∑
n=1

M∑
m=1

cnm

[
1

1 + eξnm
− 1

2
+ 2ξnmλ(ξnm)− ∂λ(ξnm)

∂ξnm

(
〈γ2nm〉 − ξ2nm

)]

=
N∑
n=1

M∑
m=1

cnm

[
e−ξnm/2

eξji/2 + e−ξnm/2
+

1
2
eξnm/2 − 1

2
e−ξnm/2

eξnm/2 + e−ξnm/2
− 1

2
− ∂λ(ξnm)

∂ξnm

(
〈γ2nm〉 − ξ2nm

)]

=
N∑
n=1

M∑
m=1

cnm

[
1
2
eξnm/2 + 1

2
e−ξnm/2

eξnm/2 + e−ξnm/2
− 1

2
− ∂λ(ξnm)

∂ξnm

(
〈γ2nm〉 − ξ2nm

)]

=−
N∑
n=1

M∑
m=1

cnm
∂λ(ξnm)

∂ξnm

(
〈γ2nm〉 − ξ2nm

)
(B.72)

Because the derivative of λ(ξn) is purely negative, F is maximized at

ξ2nm = 〈γ2nm〉 = φ (xn)T 〈wmwT
m〉φ (xn) (B.73)

B.3.5 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior
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with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (B.74)

The true posterior may be calculated from Bayes’ theorem:

p(α|−) ∝ p (W|α) p (α) (B.75)

The variational posterior can be calculated by solving the true posterior as a function

of α, then taking the variational expectation 〈·〉:

p(α|−) ∝
M∏
m=1

D∏
d=1
��

��(2π)−
1
2α

1
2
md exp

(
−αmdw

2
md

2

)
�
�
��ba00

Γ(a0)
αa0−1md exp (−b0αmd)

∝
M∏
m=1

D∏
d=1

α
1
2
md exp

(
−αmdw

2
md

2

)
αa0−1md exp (−b0αmd)

∝
M∏
m=1

D∏
d=1

α
a0+

1
2
−1

md exp

(
−αmd

[
b0 +

1

2
w2
md

])
(B.76)

Therefore, the α’s are Gamma distributed:

p(α|−) =
M∏
m=1

D∏
d=1

Gamma (αmd|amd, bmd) , (B.77)

where

amd = a0 +
1

2
(B.78)

bmd = b0 +
1

2
w2
md, (B.79)

Useful moments in VB updates for other model parameters:

〈αmd〉 =
amd
bmd

(B.80)

〈Am〉 = diag〈αm〉 (B.81)
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B.3.6 Treatment of c

The latent variable c defines which component of the RVM mixture is used. For

a fully-conjugate model, cn ∼ Multinomial(ρn) and ρn ∼ Dir(λ0). However, this

approach is not used in this work and therefore not discussed here.

In this work, the mixture of RVMs is used in a context-dependent learning frame-

work. For cases in which supervised context modeling is used, the values cnm are

determined by the known context labels. Therefore, cnm = 1 for observations col-

lected in the mth labeled context. If unsupervised context modeling is used, c can

be treated multinomial distributed and its density is determined a posteriori from

context identification. Therefore 〈cnm〉 = p(cnm|x(C)
n ) regardless of the context model

used to obtain these posterior probabilities. See Chapter 4 for more information. Dis-

criminative context-dependent learning is a unique case that is described in Chapter 5

and the VB derivation can be found in Appendix E.

B.3.7 Negative Free Energy

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the
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priors:

F =〈log p(t|w,X)〉 −KLD [q (W) q (A) ||p (W|A) p (A)]

=〈log p(t|W,X)〉 −
M∑
m=1

KLD [q (wm) ||p (wm|Am)]−
M∑
m=1

D∑
d=1

KLD [q (αmd) ||p (αmd)]

=
N∑
n=1

M∑
m=1

〈cnm〉
[
log σ (ξnm) +

1

2
(〈γn〉 − ξnm)− λ (ξnm)

(
〈γ2nm〉 − ξ2nm

)]
M∑
m=1

KLD [q (wm) ||p (wm|Am)]−
M∑
m=1

D∑
d=1

KLD [q (αmd) ||p (αmd)]

=
N∑
n=1

〈cnm〉

[
log σ (ξn) +

1

2

[
(2tn − 1)φ (xn)T 〈wm〉 − ξnm

]

− λ (ξnm)
(
φ (xn)T 〈wmwT

m〉φ (xn)− ξ2nm
)]
−KLD [q (w) ||p (w|A)]

−
D∑
d=1

KLD [q (αd) ||p (αd)]

(B.82)

where KLD [q (w) ||p (w|A)] is a KLD between two Gaussian distributions, and

KLD [q (αd) ||p (αd)] is a KLD between two Gamma distributions.
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Appendix C

Dirichlet Process Gaussian Mixture Models

One of the generative context models presented in Chapter 4 is the Dirichlet process

Gaussian mixture model (DPGMM). The DPGMM can be useful when performing

unsupervised clustering in scenarios where the number of clusters is uncertain. This

appendix presents the DPGMM of Blei and Jordan [67], as well as derivations for all

variational Bayesian (VB) update equations and the negative free energy (NFE).

C.1 Generative Model and Variable Definitions

(x|cnm = 1) ∼ ND
(
x|µm,Λ−1m

)
(C.1)

x is D × 1 feature vector

cn is M × 1 binary-coded latent variable

n = 1, 2, ..., N is data index

m = 1, 2, ..., T is mixture component index (T is arbitrarily large)

d = 1, 2, ..., D is dimension index
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C.2 Priors

(µm,Λm) ∼ ND
(
µm|ρ0, u

−1
0 Λ−1m

)
W (Λm|B0, ν0) (C.2)

cn ∼ Multinomial (π) (C.3)

πm = vm
∏
l<m

(1− vl) (C.4)

vm ∼ Beta (1, α) (C.5)

α ∼ Gamma (τ10, τ20) (C.6)

C.3 Model likelihood

The joint likelihood of data given all model parameters is given by

p (X|−) =
N∏
n=1

T∏
m=1

ND
(
xn|µm,Λ−1m

)cnm
(C.7)

log p (X|−) = −1

2

N∑
n=1

T∑
m=1

cnm

[
D log 2π + log |Λ−1m |+ (x− µm)T Λm (x− µm)

]
(C.8)

C.4 Variational Posterior on µ and Λ

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (µ,Λ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (µ,Λ) ∝ 〈log p (µ,Λ|−)〉 (C.9)

The true log-posterior may be calculated from Bayes’ theorem:

log p (µ,Λ|−) = log p (X|µ,Λ,−) + log p (µ|Λ) + log p (Λ)−K, (C.10)
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where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of µ and Λ, then taking the variational

expectation 〈·〉:

log p (µ,Λ|−) =

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
���

��D log 2π + log |Λ−1m |+ (x− µm)T Λm (x− µm)
]

− 1

2

T∑
m=1

[
���

��D log 2π −�����D log u0 + log |Λ−1m |+ (µm − ρ0)
T u0Λm (µm − ρ0)

]

+
T∑

m=1

[
ν0 −D − 1

2
log |Λm| −

�
��

�
��ν0D

2
log 2−

�
��

��
�ν0

2
log |B0| −

��
�
��

ΓD

(ν0
2

)

− 1

2
Tr
(
B−10 Λm

)]
−K

=− 1

2

N∑
n=1

T∑
m=1

cnm
[
µTmΛmµm − 2µTmΛmx + xTΛmx

]

− 1

2

T∑
m=1

[
µTmu0Λmµm − 2µTmu0Λmρ0 + ρ0

Tu0Λmρ0

]

− 1

2

T∑
m=1

[
Tr
(
B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D − 1

)
log |Λm|

]
−K

=− 1

2

T∑
m=1

[
−2µmΛm

(
u0ρ0 +

N∑
n=1

cnmxn

)
+ µTm

(
N∑
n=1

cnm + u0

)
Λmµm

+ ρTm

(
N∑
n=1

cnm + u0

)
Λmρm − ρTm

(
N∑
n=1

cnm + u0

)
Λmρm +

N∑
n=1

cnmxTΛmx

+ ρ0
Tu0Λmρ0 + Tr

(
B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D − 1

)
log |Λm|

]
−K

(C.11)
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Using the identity aTBa = Tr
(
aaTB

)
yields:

log p (µ,Λ)

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm)− Tr (umSmΛm) + Tr (CmΛm)

+ Tr (u0S0Λ0) + Tr
(
B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D − 1

)
log |Λm|

]
−K

(C.12)

Where

um = u0 +
N∑
n=1

cnm (C.13)

ρm =
u0ρ0 +

∑N
n=1 cnmx

um
(C.14)

Sm = ρmρm
T (C.15)

Cm =
N∑
n=1

cnmxxT (C.16)

S0 = ρ0ρ
T
0 (C.17)
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Consolidating the last four terms using the identity Tr (A)+Tr (B) = Tr (AB) yields:

log p (µ,Λ|−)

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm)

+ Tr
(
CmΛm − umSmΛm + u0S0Λ0 + B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D − 1

)

log |Λm|

]
−K

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm)

+ Tr
[(

Cm − umSm + u0S0 + B−10

)
Λm

]
−

(
ν0 +

N∑
n=1

cnm −D − 1

)
log |Λm|

]
−K

(C.18)

Consolidating terms reveals that µ,Λ are Normal-Wishart:

log p (µ,Λ|−) =
T∑

m=1

log
[
N
(
µm|ρm, u−1m Λ−1m

)
W (Λ|νm,Bm)

]
(C.19)

where ρm and um are defined above, and

νm = ν0 +
N∑
n=1

cnm (C.20)

Bm =
(
Cm − umSm + u0S0 + B−10

)−1
(C.21)

Useful moments in VB updates for other model parameters:

〈µm〉 = ρm (C.22)
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〈Λm〉 = νmBm (C.23)

〈µmµTm〉 = Sm + u−1m ν−1m B−1m (C.24)

〈log |Λm|〉 =
D∑
d=1

ψ

(
νm − d+ 1

2

)
+D log 2 + log |Bm| (C.25)

〈(xn − µm)T Λm (xn − µm)〉 = (xn − ρm)T νmBm (xn − ρm) +
D

um
(C.26)

C.5 Variational Posterior on v

It was derived in Section that the NFE is maximized by a variational posterior,

q (v), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (v) ∝ 〈log p(vm|−)〉 (C.27)

The true log-posterior may be calculated from Bayes’ theorem:

log p(vm|−) = log p(C|vm) + log p(vm)−K, (C.28)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of v, then taking the variational

expectation 〈·〉:

log p(vm|−) =
N∑
n=1

cnm log vm +
N∑
n=1

∑
l>m

znl log(1− vm) + (α− 1) log(1− vm)−K

=
N∑
n=1

cnm log vm +

(
α +

N∑
n=1

∑
l>m

cnl − 1

)
log(1− vm)−K

(C.29)

Therefore,

p(vm|−) = Beta(γm1, γm2) (C.30)
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where

γm1 = 1 +
N∑
n=1

cnm (C.31)

γm2 = α +
N∑
n=1

∑
l>m

cnl (C.32)

Useful moments in VB updates for other model parameters:

〈ln vm〉 = ψ(γm1)− ψ(γm1 + γm2) (C.33)

〈ln(1− vm)〉 = ψ(γm2)− ψ(γm1 + γm2) (C.34)

C.6 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (C.35)

The true log-posterior may be calculated from Bayes’ theorem:

log p(α|−) = log p(v|α) + log p(α)−K, (C.36)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of α, then taking the variational

expectation 〈·〉:

log p(α|−) =
T−1∑
m=1

(α− �1) log(1− vm)−K

+ log

[
(M − 1)

α
exp (−τ20α + τ10 logα−����

�
log Γ(τ10) +���

��τ10 log τ20)

]

=

[
−τ20 +

T−1∑
m=1

log(1− vm)

]
α +

��
��

�
��N−1∑

t=1

(1− vm) + logα(τ10 + T − 1)−K

(C.37)
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Therefore,

p(α|−) = Gamma(τ1, τ2) (C.38)

τ1 = τ10 + T − 1 (C.39)

τ2 = τ20 −
T−1∑
m=1

log(1− vm) (C.40)

Useful moments in VB updates for other model parameters:

〈α〉 =
τ1
τ2

(C.41)

C.7 Variational Posterior on C

It was derived in Section that the NFE is maximized by a variational posterior,

q (C), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (C) ∝ 〈log p (C|−)〉 (C.42)

The true log-posterior may be calculated from Bayes’ theorem:

log p (C|−) ∝ log p (X|C,−) + log p (C)−K, (C.43)

where K denotes a normalizing constant. The posterior will also be multinomial

with parameters (responsibilities) Φ:

log p(cnm = 1|−)

=−
��

�
��D

2
log 2π − 1

2
log |Λ−1m | −

1

2
(xn − µm)T Λm (xn − µm) + log vm +

∑
l<m

log (1− vl)−K

=
1

2
log |Λm| −

1

2
(xn − µm)T Λm (xn − µm) + log vm +

∑
l<m

log (1− vl)−K

(C.44)
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Therefore,

p(cn|−) ∝ Multinomial(φn) (C.45)

Useful moments in VB updates for other model parameters:

〈cnm〉 = φnm (C.46)

C.8 Negative Free Energy

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the

priors:

F =〈log p(X|µ,Λ,C)〉 −KLD [q(µ,Λ,C,v, α)||p(µ,Λ,C,v, α)]

=〈log p(X|µ,Λ,C)〉 −
N∑
n=1

KLD [q(cn)||p(cn|v)]

−
T∑

m=1

KLD [q(µm|Λm)q(Λm)||p(µm|Λm)p(Λm)]

−
T∑

m=1

KLD [q(vm)||p(vm)]−KLD [q(α)||p(α)]

=− 1

2

N∑
n=1

T∑
m=1

〈cnm〉
[
D log 2π − 〈log |Λm|〉+ 〈(x− µm)T Λm (x− µm)〉

]

−
N∑
n=1

KLD [q(cn)||p(cn|v)]−
T∑

m=1

KLD [q(µm|Λm)q(Λm)||p(µm|Λm)p(Λm)]

−
T∑

m=1

KLD [q(vm)||p(vm)]−KLD [q(α)||p(α)] ,

(C.47)

where KLD [q(cn)||p(cn|v)] is a KLD between two multinomial distributions,

KLD [q(µm|Λm)q(Λm)||p(µm|Λm)p(Λm)] is a KLD between two Normal-Wishart
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distributions, KLD [q(vm)||p(vm)] is a KLD between two Beta distributions, and

KLD [q(α)||p(α)] is a KLD between two Gamma distributions.
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Appendix D

Dirichlet Process Mixture of Factor Analyzers

The Dirichlet process mixture of factor analyzers (DPMFA) model is used in this

work for generative context learning. Like the Dirichlet process Gaussian mixture

model (DPGMM), it is an unsupervised clustering technique that facilitates learning

the number of clusters. Additionally, the use of the factor analysis model allows for a

local latent, lower-dimensional structure to be learned for each mixture component.

This is accomplished by selecting features from a shared loading matrix that is shared

between all mixture components. This appendix presents the DPMFA, adapted

from Ghaharamani and Beal [68] and Wang et al. [94], including derivations for all

variational Bayesian (VB) update equations and the negative free energy (NFE).

D.1 Model and Variable Definitions

(xn|cnm = 1) ∼ ND(Adiag (zm) sn + µm, diag (ψm)−1) (D.1)

n = 1, 2, ..., N is data index

m = 1, 2, ..., T is mixture component index (T is arbitrarily large)

d = 1, 2, ..., D is data dimension index
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k = 1, 2, ..., K is factor index

xn is D × 1 data

A = [a1, a2, ..., aK ] is D ×K factor matrix

zm = [zm1, zm2, ..., zMK ]T is K × 1 binary-coded selection vector

sn = [s1n, s2n, ..., sKN ]T is K × 1 score vector

µm = [µm1, µm2, ..., µmD]T is D × 1 component mean vector

ψm = [ψm1, ψm2, ..., ψMD]T is D × 1 component precisions

cnm is a binary-coded latent variable

D.2 Priors

p (Adk|γdk) ∼ N
(
Adk|0, γ−1dk

)
(D.2)

p (sn|δ) ∼ NK
(
sn|0, δ−1I

)
(D.3)

p (zmk|ηmk) ∼ Bernoulli (zmk|ηmk) (D.4)

p (ηmk) ∼ Beta (ηmk|a0/K, b0(K − 1)/K) (D.5)

p (γdk) ∼ Gamma (γdk|e0, f0) (D.6)

p (µm|ψm) ∼ ND
(
µm|ρ0, u

−1
0 diag (ψm)−1

)
(D.7)

p (ψmd) ∼ Gamma (ψmd|g0, h0) (D.8)

p (cn) ∼ Multinomial (cn|π) (D.9)

πm (v) = vm
∏
l<m

(1− vl) (D.10)

p (vm|α) ∼ Beta (vm|1, α) (D.11)

p (α) ∼ Gamma (α|τ10, τ20) (D.12)

p (δ) ∼ Gamma (δ|δ10, δ20) (D.13)
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D.3 Model Likelihood

The joint likelihood of data given all model parameters is given by

p (X|A,S,Z,Ψ) =
N∏
i=1

T∏
m=1

ND(Adiag (zm) sn + µm, diag (ψm)−1)cnm (D.14)

Use log-likelihood for analysis

log p (X|A,S,Z,Ψ)

=
N∑
n=1

T∑
m=1

cnm

[
−1

2

(
D log 2π + log |diag (ψ)−1 |

+ [xn − (Adiag (zm) sn + µm)]T diag (ψm) [xn − (Adiag (zm) sn + µm)]
)]

=− 1

2

N∑
n=1

T∑
m=1

cnm

(
xTndiag (ψm) xn

− [Adiag (zm) sn + µm]T diag (ψm) xn − xTndiag (ψm) [Adiag (zm) sn + µm]

+ [Adiag (zm) sn + µm]T diag (ψm) [Adiag (zm) sn + µm]

+ log |diag (ψm)−1 |+D log 2π
)

=− 1

2

N∑
n=1

T∑
m=1

cnm

(
xTndiag (ψm) xn − 2xTndiag (ψm) [Adiag (zm) sn + µm]

+ [Adiag (zm) sn + µh]
T diag (ψm) [Adiag (zm) sn + µh]

+ log |diag (ψm)−1 |+D log 2π
)

(D.15)
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Converting some of the terms to sums yields

xTndiag (ψm) [Adiag (zm) sn + µm]

=


xn1
xn2

...
xnD


T 

ψm1

ψm2 0
0 . . .

ψmP




A11 A12 . . . A1K

A21 A22 . . . A2K
...

...
. . .

...
AP1 AP2 . . . ADK



zm1

zm2 0
0 . . .

zmk



s1n
s2n
...

sKn

+


µm1

µm2
...

µmD




=


xn1ψm1

xn2ψm2
...

xnDψmP


T 


A11zm1 A12zm2 . . . A1Kzmk
A21zm1 A22zm2 . . . A2Kzmk

...
...

. . .
...

AP1zm1 AP2zm2 . . . ADKzmk



s1i
s2i
...
sKi

+


µm1

µm2
...

µmD




=


xn1ψm1

xn2ψm2
...

xnDψmP


T 

µm1 +
∑K

k=1A1kzmkskn
µm2 +

∑K
k=1A2kzmkskn

...

µmD +
∑K

k=1ADKzmkskn



=
D∑
d=1

xndψmdµmd +
D∑
d=1

K∑
k=1

xndψmdAdkzmkskn (D.16)
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[Adiag (zm) sn + µh]
T diag (ψm) [Adiag (zm) sn + µh]

=


µm1 +

∑K
k=1A1kzmkskn

µm2 +
∑K

k=1A2kzmkskn
...

µmD +
∑K

k=1ADKzmkskn


T 

ψm1

ψm2 0
0 . . .

ψmP



µm1 +

∑K
k=1A1kzmkskn

µm2 +
∑K

k=1A2kzmkskn
...

µmD +
∑K

k=1ADKzmkskn



=
D∑
d=1

ψmd

(
µmd +

K∑
k=1

Adkzmkskn

)2

=
D∑
d=1

ψmdµ
2
md + 2

D∑
d=1

K∑
k=1

ψmdµmdAdkzmkskn +
D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

+ 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
∑
l<k

Adlzmlsln (D.17)

where

log |diag (ψm)−1 | = −
P∑
j=1

logψmd (D.18)

xTndiag (ψm) xn =
D∑
d=1

x2ndψmd (D.19)
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Rephrasing the log-likelihood using these new quantities yields:

log p (X|A,S,Z,Ψ)

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
D∑
d=1

x2ndψmd − 2
D∑
d=1

xndψmdµmd − 2
D∑
d=1

K∑
k=1

xndψmdAdkzmkskn

+
D∑
d=1

ψmdµ
2
md + 2

D∑
d=1

K∑
k=1

ψmdµmdAdkzmkskn +
D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

+ 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
∑
l<k

Adlzmlsln −
P∑
j=1

logψmd +D log 2π

]

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

− 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn

(
xnd −

∑
l<k

Adlzmlsln − µmd

)
−

P∑
j=1

logψmd +D log 2π

]

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

− 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
(
x−kndm − µmd

)
−

P∑
j=1

logψmd +D log 2π

]
(D.20)

where x−kndm = xnd −
∑K

l<k Adlzmlsln.

D.4 Variational Posterior on A

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (A), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (A) ∝ 〈log p(A|X,−)〉 (D.21)
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The true log-posterior may be calculated from Bayes’ theorem

log p(A|X,−) = log p(X|A,−) + log p(A)− E, (D.22)

where E denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of A, then taking the variational

expectation 〈·〉:

log p(A|X,−)

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
���

���
���

���
���

��
D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

− 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
(
x−kndm − µmd

)
−
�
�
�
�
�
�P∑

j=1

logψmd +���
��D log 2π

]

− 1

2

D∑
d=1

K∑
k=1

A2
dkγdk −

��
��

�
��1

2

D∑
d=1

K∑
k=1

γdk −
��

��
��DK

2
log 2π − E

=
D∑
d=1

K∑
k=1

−1

2

[
−2Adk

T∑
m=1

ψmdzmk

N∑
n=1

cnmskn
(
x−kndm − µmd

)

+ A2
dk

(
γdk +

T∑
m=1

ψmdz
2
mk

N∑
n=1

cnms
2
kn

)]
− E.

(D.23)

Completing the square reveals that Adk is Gaussian:

log p(A|X,−) =
D∑
d=1

K∑
k=1

logN (ωdk, σdk), (D.24)

where

σdk =

(
γdk +

N∑
n=1

T∑
m=1

cnmψmdz
2
mks

2
kn

)−1
(D.25)
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ωdk = σdk

[
N∑
n=1

T∑
m=1

cnmψmdzmkskn
(
x−kndm − µmd

)]
(D.26)

Useful moments in VB updates for other model parameters:

〈Adk〉 = ωdk (D.27)

〈A2
dk〉 = ω2

dk + σdk (D.28)

〈AdkAdl〉 = 〈Adk〉〈Adl〉 (D.29)

D.5 Variational posterior on S

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (S), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (S) ∝ 〈log p(S|X,−)〉 (D.30)

The true log-posterior may be calculated from Bayes’ theorem

log p(sn|xn,−) = log p(xn|sn,−) + log p(sn)− E, (D.31)

where E denotes a normalizing constant. The variational posterior can be calcu-

lated by solving the true log-posterior as a function of s, then taking the variational

expectation 〈·〉:
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log p(sn|xn,−)

=− 1

2

T∑
m=1

cnm

(
(((

((((
((

xTndiag (ψm) xn − 2xTndiag (ψm) [Adiag (zm) sn + µm]

+ [Adiag (zm) sn + µm]T diag (ψm) [Adiag (zm) sn + µm] +((((
(((

((
log |diag (ψm)−1 |

+���
��D log 2π
)
− 1

2
sTnδIsn −��

�
��P

2
log 2π − E

=− 1

2

(
−2

T∑
m=1

cnmxndiag (ψm) [Adiag (zm) sn +��µm]

+
T∑

m=1

cnm [Adiag (zm) sn + µm]T diag (ψm) [Adiag (zm) sn + µm] + sTnδIsn

)
− E

=− 1

2

(
−2

T∑
m=1

cnmxndiag (ψm) Adiag (zm) sn

+
T∑

m=1

cnm [Adiag (zm) sn]T diag (ψm) [Adiag (zm) sn]

+ 2
T∑

m=1

cnm [Adiag (zm) sn]T diag (ψm)µm +((((
((((

(
µTmdiag (ψm)µm + sTnδIsn

)
− E

=− 1

2

[
−2sn

T∑
m=1

cnm [Adiag (zm)]T diag (ψm) [xn − µm]

+ sTn

(
δI +

T∑
m=1

cnm [Adiag (zm)]T diag (ψm) [Adiag (zm)]

)
sTn

]
− E

(D.32)

Completing the square reveals that skn is Gaussian:

p(sn|xn,−) = logNK(ξn,Λn) (D.33)
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where

Λn =

(
δI +

T∑
m=1

cnm [Adiag (zm)]T diag (ψm) [Adiag (zm)]

)−1
(D.34)

ξn = Λn

(
T∑

m=1

cnm [Adiag (zm)]T diag (ψm) [xn − µm]

)
(D.35)

Useful moments in VB updates for other model parameters:

〈sn〉 = ξn (D.36)

〈snsTn 〉 = ξnξ
T
n + Λn (D.37)

D.6 Variational Posterior on z

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (Z), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (Z) ∝ 〈log p(Z|X,−)〉 (D.38)

The true log-posterior may be calculated from Bayes’ theorem

log p(Z|X,−) = log p(X|Z,−) + log p(Z)− E, (D.39)

where E denotes a normalizing constant. The variational posterior can be calcu-

lated by solving the true log-posterior as a function of z, then taking the variational

expectation 〈·〉:

log p(zmk = 1|−) ∝ log p(X|zmk = 1,−) + log(πmk)− E (D.40)

log p(zmk = 0|−) ∝ log p(X|zmk = 0,−) + log(1− πmk)− E (D.41)
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Where log p(X|zmk = 1,−) and log p(X|zmk = 1,−) are given by (D.20) with zmk set

to equal 1 or 0:

log p(X|zmk = 1,−)

=− 1

2

N∑
n=1

cnm

[
���

���
���

���
���

��
D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

ψmdA
2
dks

2
kn

− 2
D∑
d=1

ψmdAdkskn
(
x−kndm − µmd

)
−
�
�
�
�
�
�P∑

j=1

logψmd +���
��D log 2π
]
− E

=− 1

2

N∑
n=1

D∑
d=1

cnmψmdA
2
dks

2
kn +

N∑
n=1

D∑
d=1

cnmψmdAdkskn
(
x−kndm − µmd

)
− E

log p(X|zmk = 0,−)

=− 1

2

N∑
n=1

cnm

[
���

���
���

���
���

��
D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

�
�
�
�
��

log
P∏
d=1

ψ−1md +���
��D log 2π
]
− E

=E

(D.42)

Therefore, p(zmk|−) ∼ Bernoulli(ρkn) , where

ρmk =
exp(ζ

(1)
mk)

exp(ζ
(1)
mk) + exp(ζ2)

(D.43)

ζ
(1)
mk = log(πmk)−

1

2

N∑
n=1

D∑
d=1

cnmψmdA
2
dkd

2
ks

2
kn

+
N∑
n=1

D∑
d=1

cnmψmdAdkdkskn
(
x−kndm − µmd

) (D.44)

ζ2 = log(1− πmk) (D.45)

Useful moments in VB updates for other model parameters:

〈zmk〉 = ρmk (D.46)
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〈z2mk〉 = ρmk, since zmk is binary. (D.47)

〈zmkzml〉 = 〈zmk〉〈zml〉 (D.48)

D.7 Variational Posterior on µ

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (µ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (µm) ∝ 〈log p(µm|X,−)〉 (D.49)

The true log-posterior may be calculated from Bayes’ theorem

log p(µm|X,−) = log p(X|µm,−) + log p(µm)− E, (D.50)

where E denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of µm, then taking the variational

expectation 〈·〉:
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log p(µm|X,−)

=− 1

2

N∑
n=1

cnm

(
[xn −Adiag (sn)− µ]T diag (ψm) [xn −Adiag (sn)− µm]

+ log |����
���diag (ψm)−1 |+����

�
D log 2π

)
− 1

2

(
[µm − ρ0]

T u0diag (ψm) [µm − ρ0]

+((((
((((

(((
log |u−10 diag (ψm)−1 |+����

�
D log 2π

)
− E

=− 1

2

N∑
n=1

cnm

(
µTmdiag (ψm)µm − 2µTmdiag (ψm) [xn −Adiag (sn)]

+

(((
((((

(((
((((

(((
((((

(((

[xn −Adiag (sn)]T diag (ψm) [xn −Adiag (sn)]
)
− 1

2

(
µTmu0diag (ψm)µm

− 2µTmu0diag (ψm)ρ0 +((((
(((

(((
ρT0 u0diag (ψm)ρ0

)
− E

=− 1

2

[
−2µm

(
u0diag (ψm)ρ0 +

N∑
n=1

cnmdiag (ψm) [xn −Adiag (sn)]
)

+
N∑
n=1

cnmµ
T
mdiag (ψm)µm + µTmu0diag (ψm)µm

]
− E

(D.51)

Therefore,

log p(µ|X,−) =
T∑

m=1

log p(µm|X,−) =
T∑

m=1

logND(ρm,Um), (D.52)

where

Um = diag (ψm)−1
(
u0 +

N∑
n=1

cnm

)−1
(D.53)

ρm = Um

(
u0diag (ψm)ρ0 +

N∑
n=1

cnmdiag (ψm) [xn −Adiag (zm) sn]

)
(D.54)
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Useful moments in VB updates for other model parameters:

〈µm〉 = ρm (D.55)

〈µmµTm〉 = ρmρ
T
m + Um (D.56)

D.8 Variational Posterior on ψ

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (ψ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (ψ) ∝ 〈log p(ψ|X,−)〉 (D.57)

The true log-posterior may be calculated from Bayes’ theorem

log p(ψ|X,−) = log p(X|ψ,−) + log p(ψ)− E, (D.58)

where E denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of ψ, then taking the variational

260



expectation 〈·〉:

log p(ψ|X,−)

=− 1

2

N∑
n=1

T∑
m=1

cnm

[ D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

− 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
(
x−kndm − µmd

)
−

P∑
j=1

logψmd +���
��D log 2π
]

+
T∑

m=1

D∑
d=1

[���
��g0 log h0 −����

�
log Γ(g0) + (g0 − 1) logψmd − h0ψmd]− E

=
N∑
n=1

T∑
m=1

cnm

[
−1

2

D∑
d=1

ψmd

(
x2nd − 2xndµmd + µ2

md +
K∑
k=1

A2
dkz

2
mks

2
kn

− 2
K∑
k=1

Adkzmkskn
[
x−kndm − µmd

])
+

1

2

P∑
j=1

logψmd

]

+
T∑

m=1

D∑
d=1

(g0 − 1) logψmd −
T∑

m=1

D∑
d=1

h0ψmd − E

(D.59)
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Exponentiating yields:

p(ψ|X,−)

∝
T∏
t=1

P∏
j=1

ψg0−1md exp (−h0ψmd)
N∏
i=1

[
ψ

1
2
md exp

(
−1

2
ψmd

[
x2nd − 2xndµmd + µ2

md

+
K∑
k=1

A2
dkz

2
mks

2
kn − 2

K∑
k=1

Adkzmkskn
(
x−kndm − µmd

)])]cnm

∝
T∏
t=1

P∏
j=1

ψg0−1md exp (−h0ψmd)
N∏
i=1

ψ
cnm
2

md exp

(
− 1

2
ψmdcnm

[
x2nd − 2xndµmd + µ2

md

+
K∑
k=1

A2
dkz

2
mks

2
kn − 2

K∑
k=1

Adkzmkskn
(
x−kndm − µmd

)])

∝
T∏
t=1

P∏
j=1

ψg0−1md exp (−h0ψmd)ψ
∑N
n=1 cnm

2
md exp

(
−1

2
ψmd

N∑
n=1

cnm

[
x2nd − 2xndµmd + µ2

md

+
K∑
k=1

A2
dkz

2
mks

2
kn − 2

K∑
k=1

Adkzmkskn
(
x−kndm − µmd

)])

∝
T∏
t=1

P∏
j=1

ψ

∑N
n=1 cnm

2
+g0−1

md exp

(
− ψmd

[
h0 +

1

2

N∑
n=1

cnm

(
x2nd − 2xndµmd + µ2

md

+
K∑
k=1

A2
dkz

2
mks

2
kn − 2

K∑
k=1

Adkzmkskn
(
x−kndm − µmd

))])
(D.60)

Therefore,

p(ψ|X,−) =
T∏
t=1

P∏
j=1

Gamma (gmd, hmd) , (D.61)

where

gmd =

∑N
n=1 cnm

2
+ g0 (D.62)
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hmd =h0 +
1

2

N∑
n=1

cnm

(
x2nd − 2xndµmd + µ2

md +
K∑
k=1

A2
dkd

2
kz

2
mks

2
kn

− 2
K∑
k=1

Adkdkzmkskn
(
x−kndm − µmd

)) (D.63)

Useful moments in VB updates for other model parameters:

〈ψmd〉 =
gmd
hmd

(D.64)

〈logψmd〉 = Digamma(gmd)− log hmd (D.65)

D.9 Variational Posterior on π

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (π), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (πmk) ∝ 〈log p(πmk|−)〉 (D.66)

The true posterior may be calculated from Bayes’ theorem

p(πmk|−) ∝ p(zmk|πmk)p(πmk)

∝ πzmkmk (1− πmk)1−zmk π
a0
K
−1

mk (1− πmk)
b0(K−1)

K

∝ π
zmk+

a0
K
−1

mk (1− πmk)zmk+
b0(K−1)

K
+1−1

(D.67)

Therefore,

p(πmk|−) = Beta (amk, bmk) , (D.68)

where

amk = zmk +
a0
K

(D.69)

bmk = zmk +
b0(K − 1)

K
+ 1 (D.70)
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Useful moments in VB updates for other model parameters:

〈πmk〉 =
amk

amk + bmk
(D.71)

〈log πmk〉 = Digamma(amk)−Digamma(amk + bmk) (D.72)

〈log(1− πmk)〉 = Digamma(bmk)−Digamma(amk + bmk) (D.73)

D.10 Variational Posterior on γ

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (γ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (γdk) ∝ 〈log p(γdk|−)〉 (D.74)

The true posterior may be calculated from Bayes’ theorem

p(γdk|−) ∝ p(Adk|γdk)p(γdk)

∝��
��(2π)−

1
2γ

1
2
dk exp

[
−γdkA

2
dk

2

]
γe0−1dk exp (−f0γdk)

∝ γ
e0+

1
2

dk exp

(
−γdk

[
f0 +

A2
dk

2

]) (D.75)

Therefore,

p(γdk|−) ∝ Gamma(edk, fdk), (D.76)

where

edk = e0 +
1

2
(D.77)

fdk = f0 +
A2
dk

2
(D.78)

Useful moments in VB updates for other model parameters:

〈γdk〉 =
edk
fdk

(D.79)
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D.11 Variational Posterior on C

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (C), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (C) ∝ 〈log p(C|−)〉 (D.80)

The true log-posterior may be calculated from Bayes’ theorem

log p(cnm = 1|−) = log p(xn|cnm = 1,−) + log p(cnm = 1)− E, (D.81)

where E denotes a normalizing constant. The posterior will also be multinomial with

parameters (responsibilities) Φ:

log p(cnm = 1|−)

=− 1

2

[ D∑
d=1

ψmd
(
x2nd − 2xndµmd + µ2

md

)
+

D∑
d=1

K∑
k=1

ψmdA
2
dkz

2
mks

2
kn

− 2
D∑
d=1

K∑
k=1

ψmdAdkzmkskn
(
x−kndm − µmd

)
−

P∑
j=1

logψmd +D log 2π
]

+ log vm +
∑
l<m

log (1− vl)− E

(D.82)

Useful moments in VB updates for other model parameters:

〈cnm〉 = φnm (D.83)

D.12 Variational Posterior on v

It was derived in Section that the NFE is maximized by a variational posterior,

q (v), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (v) ∝ 〈log p(vm|−)〉 (D.84)
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The true log-posterior may be calculated from Bayes’ theorem:

log p(vm|−) = log p(C|vm) + log p(vm)− E, (D.85)

where E denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of v, then taking the variational

expectation 〈·〉:

log p(vm|−) =
N∑
n=1

cnm log vm +
N∑
n=1

∑
l>m

znl log(1− vm) + (α− 1) log(1− vm)−K

=
N∑
n=1

cnm log vm +

(
α +

N∑
n=1

∑
l>m

cnl − 1

)
log(1− vm)− E

(D.86)

Therefore,

log p(vm|−) = Beta(νt1, νt2) (D.87)

where

νt1 = 1 +
N∑
n=1

cnm (D.88)

νt2 = α +
N∑
n=1

∑
s>m

cnm (D.89)

Useful moments in VB updates for other model parameters:

〈ln vm〉 = ψ(νt1)− ψ(νt1 + νt2) (D.90)

〈ln(1− vm)〉 = ψ(νt2)− ψ(νt1 + νt2) (D.91)

D.13 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior
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with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (D.92)

The true posterior may be calculated from Bayes’ theorem:

log p(α|−) = log p(v|α) + log p(α)− E, (D.93)

where E denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of α, then taking the variational

expectation 〈·〉:

log p(α|−) =
T−1∑
t=1

(α− �1) log(1− vm) + log

[
(T − 1)

α
exp
(
−τ20α + τ10 logα

−����
�

log Γ(τ10) +���
��τ10 log τ20

)]
− E

=

[
−τ20 +

T−1∑
t=1

log(1− vm)

]
α +

��
��

�
��T−1∑

m=1

(1− vm) + logα(τ10 + T − 1)− E

(D.94)

Therefore,

p(α|−) ∝ Gamma(τ1, τ2), (D.95)

where

τ1 = τ10 + T − 1 (D.96)

τ2 = τ20 −
T−1∑
m=1

log(1− vm) (D.97)

Useful moments in VB updates for other model parameters:

〈α〉 =
τ1
τ2

(D.98)
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D.14 Variational Posterior on δ

It was derived in Section that the NFE is maximized by a variational posterior,

q (δ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (δ) ∝ 〈log p(δ|−)〉 (D.99)

The true posterior may be calculated from Bayes’ theorem:

p(δ|−) ∝ p(S|δ)p(δ)

∝
N∏
i=1

��
���(2π)−P/2δ−K/2 exp

(
−1

2
δ

K∑
k=1

s2kn

)
δδ10−1 exp (−δ20δ)

∝ δδ10+KN/2−1 exp

[
−δ

(
δ20 +

1

2

N∑
n=1

K∑
k=1

s2kn

)] (D.100)

Therefore,

q(δ) ∝ Gamma(δ1, δ2), (D.101)

where

δ1 = δ10 +
KN

2
(D.102)

δ2 = δ20 +
1

2

N∑
n=1

K∑
k=1

s2kn. (D.103)

Useful moments in VB updates for other model parameters:

〈δ〉 =
δ1
δ2

(D.104)

D.15 Negative Free Energy

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the
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priors:

F =〈log p (X|A,S,Z,Ψ)〉

−KLD [q(A,S,Z,µ,Ψ,π,γ,C,v, α, δ)||p(A,S,Z,µ,Ψ,π,γ,C,v, α, δ)]

=〈log p (X|A,S,Z,Ψ)〉 −
D∑
d=1

K∑
k=1

KLD [q(Adk)||p(Adk)]−
N∑
n=1

KLD [q(sn)||p(sn)]

−
T∑

m=1

K∑
k=1

KLD [q(zmk)||p(zmk)]−
T∑

m=1

KLD [q(µm)||p(µm)]

−
T∑

m=1

D∑
d=1

KLD [q(ψmd)||p(ψmd)]−
T∑

m=1

K∑
k=1

KLD [q(πtk)||p(πtk)]

−
D∑
d=1

K∑
k=1

KLD [q(γdk)||p(γdk)]−
N∑
n=1

KLD [q(cn)||p(cn)]

−
T∑

m=1

KLD [q(vm)||p(vm)]−KLD [q(α)||p(α)]−KLD [q(δ)||p(δ)]

(D.105)

where

〈log p (X|A,S,Z,Ψ)〉 =− 1

2

N∑
n=1

T∑
m=1

〈cnm〉

[
D∑
d=1

〈ψmd〉
(
x2nd − 2xnd〈µmd〉+ 〈µ2

md〉
)

+
D∑
d=1

K∑
k=1

〈ψmd〉〈A2
dk〉〈z2mk〉〈s2kn〉

− 2
D∑
d=1

K∑
k=1

〈ψmd〉〈Adkzmksknx−kndm〉

− 2
D∑
d=1

K∑
k=1

〈ψmd〉〈Adk〉〈zmk〉〈skn〉〈µmd〉

+ 〈log
P∏
j=1

ψ−1md〉+D log 2π

]
,

(D.106)
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and KLD [q(Adk)||p(Adk)] is a KLD between two Gaussian distributions,

KLD [q(sn)||p(sn)] is between two K-dimensional Gaussian distributions,

KLD [q(zmk)||p(zmk)] is between two Bernoulli distributions, KLD [q(µm)||p(µm)] is

between two D-dimensional Gaussian distributions, KLD [q(ψmd)||p(ψmd)] is between

two Gamma distributions, KLD [q(πtk)||p(πtk)] is between two Beta distributions,

KLD [q(γdk)||p(γdk)] is between two Gamma distributions, KLD [q(cn)||p(cn)] is be-

tween two multinomial distributions, KLD [q(vm)||p(vm)] is between two Beta distri-

butions, KLD [q(α)||p(α)] is between two Gamma distributions, and KLD [q(δ)||p(δ)]

is between two Gamma distributions.
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Appendix E

Discriminative DPGMM-RVM

The DPGMM-RVM hybrid model is used for discriminative context learning in Chap-

ter 5. The model is constructed based on the mixture-of-RVMs presented in Ap-

pendix B.3 where the latent mixing variables are governed by a DPGMM, which was

described in Appendix C. Therefore, the derivations for the update equations and

NFE for the DPGMM-RVM are very similar to the individual RVM and DPGMM

models. Learning the DPGMM seeks to jointly cluster the contextual features (X(C))

and classify the target features (X(T )) according to the labels, t.

E.1 Generative Model and Variable Definitions

ynm = wT
mx(T )

n (E.1)

(tn|cnm = 1) ∼ σ(ynm)tn [1− σ(ynm)]1−tn (E.2)

(x(C)
n |cnm = 1) ∼ ND(C)

(
µm,Λ

−1
m

)
(E.3)

x
(T )
n is D(T ) × 1 target feature vector
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x
(C)
n is D(C) × 1 contextual feature vector

tn is binary class label

cn is binary-coded latent variable

n = 1, 2, ..., N is data index

m = 1, 2, ..., T is mixture component index

d = 1, 2, ..., D(C) or D(T ) is dimension index

E.2 Priors

(µm,Λm) ∼ ND(C)

(
µm|ρ0, u

−1
0 Λ−1m

)
W (Λm|B0, ν0) (E.4)

wm ∼ ND(T )

(
0, diag (βm)−1

)
(E.5)

βmd ∼ Gamma (a0, b0) (E.6)

cn ∼ Multinomial(πn) (E.7)

πm = vm
∏
l<h

(1− vl) (E.8)

vm ∼ Beta (1, α) (E.9)

α ∼ Gamma (τ10, τ20) (E.10)

E.3 Model Likelihood

The joint likelihood of labels and context features, given all model parameters is

given by

p(t,X(C)|−) =
N∏
n=1

T∏
m=1

[
σ(ynm)tn [1− σ(ynm)]1−tn ND(C)

(
x(C)
n |µm,Λ−1m

)]cnm
(E.11)

272



s:

log p(t,X(C)|−) =
N∑
n=1

T∑
m=1

cnm

(
tn log σ(ynm) + (1− tn) log [1− σ(ynm)]

− 1

2

[
D(C) log 2π + log |Λ−1m |+

(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)])
(E.12)

E.4 Variational Posterior on µ and Λ

It was derived in Section E.10 that the NFE is maximized by a variational posterior,

q (µ,Λ), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (µ,Λ) ∝ 〈log p (µ,Λ|−)〉 (E.13)

The true log-posterior may be calculated from Bayes’ theorem:

log p (µ,Λ|−) = log p
(
t|X(T ),W,−

)
+ log p

(
X(C)|µ,Λ,−

)
+ log p (µ|Λ) + log p (Λ)−K,

(E.14)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of µ and Λ, then taking the variational

expectation 〈·〉:
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log p (µ,Λ|−)

=
N∑
n=1

T∑
m=1

cnm

(
(((

((((tn log σ(ynm) +
((((

(((
((((

((
(1− tn) log [1− σ(ynm)]− 1

2

[
���

���D(C) log 2π + log |Λ−1m |

+
(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)])
− 1

2

T∑
m=1

[
��

���
�

D(C) log 2π + log uD
(C)

0 + log |Λ−1m |

+ (µm −m0)
T u0Λm (µm −m0)

]
+

T∑
m=1

[
ν0 −D(C) − 1

2
log |Λm| −

��
�
��

��
ν0D

(C)

2
log 2

−
��

��
��ν0

2
log |B0| −����

��ΓD(C)

(ν0
2

)
− 1

2
Tr
(
B−10 Λm

)]
−K

=− 1

2

N∑
n=1

T∑
m=1

cnm

[
µTmΛmµm − 2µTmΛmx

(C)
n + x(C)

n

T
Λmx

(C)
n

]

− 1

2

T∑
m=1

[
µTmu0Λmµm − 2µTmu0Λmm0 +m0

Tu0Λmm0

]

−
2

T∑
m=1

[
Tr
(
B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D(C) − 1

)
log |Λm|

]
−K

=− 1

2

T∑
m=1

[
−2µmΛm

(
u0ρ0 +

N∑
n=1

cnmxn

)
+ µTm

(
N∑
n=1

cnm + u0

)
Λmµm

+ ρTmumΛmρm − ρTmumΛmρm +
N∑
n=1

cnmx(C)
n

T
Λmx(C)

n +m0
Tu0Λmm0 + Tr

(
B−10 Λm

)

−

(
ν0 +

N∑
n=1

cnm −D(C) − 1

)
log |Λm|

]
−K

(E.15)

Completing the square in the first two terms, and then using the identity aTBa =
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Tr
(
aaTB

)
yields:

log p (µ,Λ|−)

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm)− Tr (umMmΛm) + Tr (CmΛm)

+ Tr (u0M0Λ0) + Tr
(
B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D(C)

)
log |Λm|

]
−K

(E.16)

Where

um = u0 +
N∑
n=1

cnm (E.17)

ρm =
u0ρ0 +

∑N
n=1 cnmx

(C)
n

um
(E.18)

Mm = ρmρm
T (E.19)

Cm =
N∑
n=1

cnmx(C)
n x(C)

n

T
(E.20)

M0 = ρ0ρ
T
0 (E.21)
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Consolidating the last four terms using the identity Tr (A)+Tr (B) = Tr (AB) yields:

log p (µ,Λ|−)

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm) + Tr

(
CmΛm − umMmΛm

+ u0M0Λ0 + B−10 Λm

)
−

(
ν0 +

N∑
n=1

cnm −D(C) − 1

)
log |Λm|

]
−K

=− 1

2

T∑
m=1

[
(µm − ρm)T umΛm (µm − ρm)

+ Tr
[(

Cm − umMm + u0M0 + B−10

)
Λm

]
−

(
ν0 +

N∑
n=1

cnm −D(C) − 1

)
log |Λm|

]
−K

(E.22)

Consolidating terms reveals that µ,Λ are Normal-Wishart:

log p (µ,Λ|−) =
T∑

m=1

log
[
N
(
µm|ρm, u−1m Λ−1m

)
W (Λ|νm,Bm)

]
(E.23)

where ρm and um are defined above, and

νm = ν0 +
N∑
n=1

cnm (E.24)

Bm =
(
Cm − umMm + u0M0 + B−10

)−1
(E.25)

Useful moments in VB updates for other model parameters:

〈µm〉 = ρm (E.26)

〈Λm〉 = νmBm (E.27)

〈µmµTm〉 = ρmρm
T + u−1m ν−1m B−1m (E.28)
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〈log |Λm|〉 =
D(C)∑
d=1

ψ

(
νm − p+ 1

2

)
+D(C) log 2 + log |Bm| (E.29)

〈
(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)
〉 =

(
x(C)
n − ρ

)T
νmBm

(
x(C)
n − ρm

)
+
D(C)

um
(E.30)

E.5 Variational Posterior on w

It was derived in Section that the NFE is maximized by a variational posterior,

q (W), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (W) ∝ 〈log p (W|−)〉 (E.31)

The true log-posterior may be calculated from Bayes’ theorem:

log p (W|−) = log p
(
t|W ,X(T ),−

)
+ log p

(
X(T )|−

)
+ log p (W )−K,

(E.32)

where K denotes a normalizing constant.

Because the binomial distribution on t does not offer conjugate updating for our

choice of the prior on w, we impose a lower-bound approximation to p(tn|wm,x
(T )
n ):

p(tn|wm) =σ (ynm)tn [1− σ (ynm)]1−tn

≥σ (ξnm) exp

[
γnm − ξnm

2
− λ (ξnm)

(
γ2nm − ξ2nm

)] (E.33)

where ξnm is a variational parameter and

γnm = (2tn − 1) ynm (E.34)

λ (ξnm) =
1

4ξnm
tanh

(
ξnm
2

)
(E.35)
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Using the approximation for p(tn|wm,x
(T )
n ), the variational posterior can be cal-

culated by solving for p (W|−) as a function of W, then taking the variational

expectation 〈·〉:

log p (W|−)

=
N∑
n=1

T∑
m=1

cnm

([
���

���log σ (ξnm) +
1

2
(γnm −���ξnm)− λ (ξnm)

(
γ2nm −���ξ

2
nm

)]

−����
���1

2�
���

��
D(C) log 2π −

�
��

�
��1

2
log |Λ−1m | −

���
���

���
���

���
���

1

2

(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

))

− 1

2

T∑
m=1

[
��

���P log 2π +���
�log |A|+ wT

mAwm

]
−K

=− 1

2

T∑
m=1

[
wT
mAwm +

N∑
n=1

cnm
(
2λ (ξnm) γ2nm − γnm

)]

=− 1

2

T∑
m=1

[
wT
mAwm +

N∑
n=1

cnm

(
2λ (ξnm) wT

mx(T )
n x(T )

n

T
wm − (2tn − 1) wT

mx(T )
n

)]

=− 1

2

T∑
m=1

[
−2wT

m

(
1

2

N∑
n=1

cnm (2tn − 1) x(T )
n

)

+ wT
m

(
A + 2

N∑
n=1

cnmλ (ξnm) xnx
(T )
n

)
wm

]
(E.36)

Completing the square reveals that W is Gaussian:

log p (W|−) =
T∑

m=1

logN (wm|ωm,Σm) (E.37)

where

ωm =
1

2
Σm

(
N∑
n=1

cnm (2tn − 1) x(T )
n

)
(E.38)
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Σm =

(
A + 2

N∑
n=1

cnmλ (ξnm) x(T )
n x(T )

n

T

)−1
(E.39)

Useful moments in VB updates for other model parameters:

〈wm〉 = ωm (E.40)

〈wmwT
m〉 = ωmωm

T + Σm (E.41)

E.6 Variational Posterior on ξ

The updates for the variational parameter ξ are derived by directly optimizing the

Negative Free Energy:

L =〈log p(t,X(C)|−)〉 −KLD [q (µ,Λ) ||p (µ,Λ)]−KLD [q (W) ||p (w)]

−KLD [q (A) ||p (A)]−KLD [q (Z) ||p (Z)]−KLD [q (v) ||p (v)]−KLD [q (α) ||p (α)]

(E.42)

∂L
∂ξ

=
∂

∂ξ
〈log p(t,X(C)|−)〉 =

∂

∂ξ
〈p(tn|wm,x

(T )
n )〉 (E.43)

Substituting the approximation for p(tn|wm,x
(T )
n ):

∂L
∂ξ

=
T∑

m=1

D(T )∑
d=1

[
1

1 + eξmd
− 1

2
+ 2ξmdλ(ξmd)−

∂λ(ξmd)

∂ξmd

(
〈γ2md〉 − ξ2md

)]

=
T∑

m=1

D(T )∑
d=1

[
e−ξmd/2

eξmd/2 + e−ξmd/2
+

1
2
eξmd/2 − 1

2
e−ξmd/2

eξmd/2 + e−ξmd/2
− 1

2
− ∂λ(ξmd)

∂ξmd

(
〈γ2md〉 − ξ2md

)]

=
T∑

m=1

D(T )∑
d=1

[
1
2
eξmd/2 + 1

2
e−ξmd/2

eξmd/2 + e−ξmd/2
− 1

2
− ∂λ(ξmd)

∂ξmd

(
〈γ2md〉 − ξ2md

)]

=−
T∑

m=1

D(T )∑
d=1

∂λ(ξmd)

∂ξmd

(
〈γ2md〉 − ξ2md

)
(E.44)

Because the derivative of λ(ξmd) is purely negative, L is maximized at

ξ2md = 〈γ2md〉 = x(T )T 〈wmwT
m〉x(T ) (E.45)
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E.7 Variational Posterior on β

It was derived in Section that the NFE is maximized by a variational posterior,

q (β), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (β) ∝ 〈log p(β|−)〉 (E.46)

The true posterior may be calculated from Bayes’ theorem:

p (β|−) ∝ p (W|β) p (β) (E.47)

The variational posterior can be calculated by solving the true posterior as a function

of β, then taking the variational expectation 〈·〉:

p (β|−) ∝
T∏

m=1

D(T )∏
d=1
��

��(2π)−
1
2β

1
2
md exp

(
−βmdw

2
md

2

)
�
�
��ba00

Γ(a0)
βa0−1md exp (−b0βmd)

∝
T∏

m=1

D(T )∏
d=1

β
1
2
md exp

(
−βmdw

2
md

2

)
βa0−1md exp (−b0βmd)

∝
T∏

m=1

D(T )∏
d=1

β
a0+

1
2
−1

md exp

(
−βmd

[
b0 +

1

2
w2
md

])
(E.48)

Therefore, the β’s are Gamma distributed:

p (β|−) =
T∏

m=1

D(T )∏
d=1

Gamma (βmd|amd, bmd) , (E.49)

where

amd = a0 +
1

2
(E.50)

bmd = b0 +
1

2
w2
md (E.51)

Useful moments in VB updates for other model parameters:

〈βmd〉 =
amd
bmd

(E.52)
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E.8 Variational Posterior on V

It was derived in Section that the NFE is maximized by a variational posterior,

q (v), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (v) ∝ 〈log p(vm|−)〉 (E.53)

The true log-posterior may be calculated from Bayes’ theorem:

log p(vm|−) = log p(C|vm) + log p(vm)−K, (E.54)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of v, then taking the variational

expectation 〈·〉:

log p(vm|−) =
N∑
n=1

cnm log vm +
N∑
n=1

∑
l>m

znl log(1− vm) + (α− 1) log(1− vm)−K

=
N∑
n=1

cnm log vm +

(
α +

N∑
n=1

∑
l>m

cnl − 1

)
log(1− vm)−K

(E.55)

Therefore,

p(vm|−) = Beta(νm1, νm2) (E.56)

where

νm1 = 1 +
N∑
n=1

cnm (E.57)

νm2 = α +
N∑
n=1

∑
l>m

cnl (E.58)

Useful moments in VB updates for other model parameters:

〈ln vm〉 = ψ(νm1)− ψ(νm1 + νm2) (E.59)

〈ln(1− vm)〉 = ψ(νm2)− ψ(νm1 + νm2) (E.60)
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E.9 Variational Posterior on α

It was derived in Section that the NFE is maximized by a variational posterior,

q (α), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (α) ∝ 〈log p(α|−)〉 (E.61)

The true log-posterior may be calculated from Bayes’ theorem:

log p(α|−) = log p(v|α) + log p(α)−K, (E.62)

where K denotes a normalizing constant. The variational posterior can be calculated

by solving the true log-posterior as a function of α, then taking the variational

expectation 〈·〉:

log p(α|−) =
T−1∑
m=1

(α− �1) log(1− vm)−K

+ log

[
(M − 1)

α
exp (−τ20α + τ10 logα−����

�
log Γ(τ10) +���

��τ10 log τ20)

]

=

[
−τ20 +

T−1∑
m=1

log(1− vm)

]
α +

��
�
��

��N−1∑
t=1

(1− vm) + logα(τ10 + T − 1)−K

(E.63)

Therefore,

p(α|−) = Gamma(τ1, τ2) (E.64)

τ1 = τ10 + T − 1 (E.65)

τ2 = τ20 −
T−1∑
m=1

log(1− vm) (E.66)

Useful moments in VB updates for other model parameters:

〈α〉 =
τ1
τ2

(E.67)
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E.10 Variational Posterior on C

It was derived in Section that the NFE is maximized by a variational posterior,

q (C), that is proportional to the variational expectation of the true log-posterior

with respect to all other model parameters:

q (C) ∝ 〈log p (C|−)〉 (E.68)

The true log-posterior may be calculated from Bayes’ theorem:

log p (C|−) ∝ log p(T,X(C)|C,−) + log p(C)−K, (E.69)

where K denotes a normalizing constant. The posterior will also be multinomial

with parameters (responsibilities) Φ:

log p(cnm = 1|−) = log ρnm

∝ log σ (ξnm) +
1

2
(γnm − ξnm)− λ (ξnm)

(
γ2nm − ξ2nm

)
−
��

��
�
��

D(C)

2
log 2π − 1

2
log |Λ−1m |

− 1

2

(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)
+ log vm +

∑
l<m

log (1− vl)

∝ log σ (ξnm) +
1

2

(
[2tn − 1] wT

mx(T )
n − ξnm

)
− λ (ξnm)

(
x(T )
n

T
wmwT

mx(T )
n − ξ2nm

)
+

1

2
log |Λm| −

1

2

(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)
+ log vm +

∑
l<m

log (1− vl)

(E.70)

Therefore,

p(cn|−) = Multinomial(φn) (E.71)

Useful moments in VB updates for other model parameters:
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E.11 Negative Free Energy

The NFE can be expressed as the difference between the expected log-likelihood and

the Kullback-Leibler divergence (KLD) between the variational posteriors and the

priors:

F =〈log p(t,X(C)|−)〉 −KLD [q (µ,Λ,W,β,C,v,α) ||p (µ,Λ,W,β,C,v,α)]

=〈log p(t|W,X(T ))〉+ 〈log p(X(C)|µ,Λ,C)〉 −
T∑

m=1

KLD [q (wm) ||p (wm|βm)]

−
T∑

m=1

P∑
p=1

KLD [q (βmd) ||p (βmd)]−
N∑
n=1

KLD [q(cn)||p(cn|v)]

−
T∑

m=1

KLD [q(ρm|Λm)q(Λm)||p(ρm|Λm)p(Λm)]

−
T∑

m=1

KLD [q(vm)||p(vm)]−KLD [q(α)||p(α)]

=
N∑
n=1

T∑
m=1

〈cnm〉
[
log σ (ξnm) +

1

2
(〈γnm〉 − ξnm)− λ (ξnm)

(
〈γ2nm〉 − ξ2nm

)]

− 1

2

N∑
n=1

T∑
m=1

〈cnm〉
[
D log 2π − 〈log |Λm|〉+ 〈(x− µm)T Λm (x− µm)〉

]

−
T∑

m=1

KLD [q (wm) ||p (wm|βm)]−
T∑

m=1

P∑
p=1

KLD [q (βmd) ||p (βmd)]

−
N∑
n=1

KLD [q(cn)||p(cn|v)]−
T∑

m=1

KLD [q(ρm|Λm)q(Λm)||p(ρm|Λm)p(Λm)]

−
T∑

m=1

KLD [q(vm)||p(vm)]

−KLD [q(α)||p(α)]

(E.72)
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=
N∑
n=1

〈cnm〉
[
log σ (ξi) +

1

2

[
(2tn − 1) x(T )

n

T 〈wm〉 − ξnm
]]

− λ (ξnm)
(
x(T )
n

T 〈wmwT
m〉φ (xn)− ξ2nm

)]

− 1

2

N∑
n=1

T∑
m=1

〈cnm〉
[
D log 2π − 〈log |Λm|〉+ 〈

(
x(C)
n − µm

)T
Λm

(
x(C)
n − µm

)
〉
]

−
T∑

m=1

KLD [q (wm) ||p (wm|βm)]−
T∑

m=1

P∑
p=1

KLD [q (βmd) ||p (βmd)]

−
N∑
n=1

KLD [q(cn)||p(cn|v)]−
T∑

m=1

KLD [q(ρm|Λm)q(Λm)||p(ρm|Λm)p(Λm)]

−
T∑

m=1

KLD [q(vm)||p(vm)]−KLD [q(α)||p(α)]

(E.73)

where KLD [q (wm) ||p (wm||βm)] is a KLD between two Gaussian distributions,

KLD [q (βmd) ||p (βmd)] is a KLD between two Gamma distributions,

KLD [q(cn)||p(cn|v)] is a KLD between two multinomial distributions,

KLD [q(ρm|Λm)q(Λm)||p(ρm|Λm)p(Λm)] is a KLD between two Normal-Wishart dis-

tributions, KLD [q(vm)||p(vm)] is a KLD between two Beta distributions, and KLD [q(α)||p(α)]

is a KLD between two Gamma distributions.
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